메뉴 건너뛰기




Volumn 53, Issue 1, 2006, Pages 62-66

A Prediction Fusion Method for Reconstructing Spatial Temporal Dynamics Using Support Vector Machines

Author keywords

Data fusion; namics; neural networks; nonlinear dy ; prediction; signal modeling; spatial temporal dynamics; support vector machine (SVM)

Indexed keywords

NEURAL NETWORKS; RADAR; SIGNAL FILTERING AND PREDICTION; SIGNAL RECONSTRUCTION; SUPPORT VECTOR MACHINES;

EID: 33746913944     PISSN: 15497747     EISSN: 15583791     Source Type: Journal    
DOI: 10.1109/TCSII.2005.854585     Document Type: Article
Times cited : (18)

References (19)
  • 1
    • 0025416825 scopus 로고
    • Maritime surveillance radar part 1: radar scattering from the ocean surface
    • K. D. Ward, C. J. Baker, and S. Watts, “Maritime surveillance radar part 1: radar scattering from the ocean surface,” Proc. Inst. Elect. Eng., vol. 137, pp. 51–62, 1990.
    • (1990) Proc. Inst. Elect. Eng. , vol.137 , pp. 51-62
    • Ward, K.D.1    Baker, C.J.2    Watts, S.3
  • 2
    • 0002610426 scopus 로고    scopus 로고
    • Spatial-temporal statistical modeling of live-stock wast in streams
    • N. Cressie and J. J. Majure, “Spatial-temporal statistical modeling of live-stock wast in streams,” J. Agri., Biolog., Environ. Stat., vol. 2, pp. 24-47, 1997.
    • (1997) J. Agri., Biolog., Environ. Stat. , vol.2 , pp. 24-47
    • Cressie, N.1    Majure, J.J.2
  • 3
    • 0029277513 scopus 로고
    • A spatial temporal dynamical model for multipath scattering from the sea
    • H. Leung and T. Lo, “A spatial temporal dynamical model for multipath scattering from the sea,” IEEE Trans. Geosci. Remote Sensing, vol. 33, no. 2, pp. 441–448, 1995.
    • (1995) IEEE Trans. Geosci. Remote Sensing , vol.33 , Issue.2 , pp. 441-448
    • Leung, H.1    Lo, T.2
  • 4
    • 0024070862 scopus 로고
    • Non-Gaussian models for the statistics of scattered waves
    • E. Jakeman and R. J. A. Tough, “Non-Gaussian models for the statistics of scattered waves,” Adv. Phys., vol. 37, no. 5, pp. 471–529, 1988.
    • (1988) Adv. Phys. , vol.37 , Issue.5 , pp. 471-529
    • Jakeman, E.1    Tough, R.J.A.2
  • 5
    • 0027632108 scopus 로고
    • Chaotic radar signal processing over the the sea
    • Jul
    • H. Leung and T. Lo, “Chaotic radar signal processing over the the sea,” IEEE J. Ocean. Eng., vol. 18, no. 3, pp. 287–293, Jul. 1993.
    • (1993) IEEE J. Ocean. Eng. , vol.18 , Issue.3 , pp. 287-293
    • Leung, H.1    Lo, T.2
  • 6
    • 44949289686 scopus 로고
    • Extract cellular automation rues directly from experimental data
    • F. C. Richards, T. P. Meyer, and N. H. Packard, “Extract cellular automation rues directly from experimental data,” Phys. D, vol. 45, pp. 189–202, 1990.
    • (1990) Phys. D , vol.45 , pp. 189-202
    • Richards, F.C.1    Meyer, T.P.2    Packard, N.H.3
  • 7
    • 0001772107 scopus 로고
    • Signatures of deterministic chaos in radar sea clutter and ocean surface winds
    • A. J. Palmer, R. A. Kropfli, and C. W. Fairall, “Signatures of deterministic chaos in radar sea clutter and ocean surface winds,” Chaos, vol. 5, pp. 613–616, 1995.
    • (1995) Chaos , vol.5 , pp. 613-616
    • Palmer, A.J.1    Kropfli, R.A.2    Fairall, C.W.3
  • 8
    • 0035385743 scopus 로고    scopus 로고
    • Sea clutter modeling using a radial basis function neural network
    • Jul
    • G. Hennessey, H. Leung, A. Drosopoulos, and P. C. Yip, “Sea clutter modeling using a radial basis function neural network,” IEEE J. Ocean. Eng., vol. 26, no. 3, pp. 358–372, Jul. 2001.
    • (2001) IEEE J. Ocean. Eng. , vol.26 , Issue.3 , pp. 358-372
    • Hennessey, G.1    Leung, H.2    Drosopoulos, A.3    Yip, P.C.4
  • 9
    • 0028697652 scopus 로고
    • Detection and estimation using an adaptive rational function filter
    • Nov
    • H. Leung and S. Haykin, “Detection and estimation using an adaptive rational function filter,” IEEE Trans. Signal Process., vol. 42, no. 11, pp. 3366–3376, Nov. 1994.
    • (1994) IEEE Trans. Signal Process. , vol.42 , Issue.11 , pp. 3366-3376
    • Leung, H.1    Haykin, S.2
  • 10
    • 0011198894 scopus 로고    scopus 로고
    • Detecting nonlinear dynamics in spatial-tem-poral systems, examples from ecological models
    • S. Little, S. Ellner, M. Pascual, M. Neubert, D. Kaplan, T. Sauer, H. Caswell, and A. Solow, “Detecting nonlinear dynamics in spatial-tem-poral systems, examples from ecological models,” Phys. A, vol. 96, pp. 321–333 1996.
    • (1996) Phys. A , vol.96 , pp. 321-333
    • Little, S.1    Ellner, S.2    Pascual, M.3    Neubert, M.4    Kaplan, D.5    Sauer, T.6    Caswell, H.7    Solow, A.8
  • 11
    • 0001766834 scopus 로고    scopus 로고
    • Prediction of spatial-temporal time series based on reconstructed local states
    • U. Parlitz and C. Merkwirth, “Prediction of spatial-temporal time series based on reconstructed local states,” Phys. Rev. Lett., vol. 84, pp. 1890–1893, 2000.
    • (2000) Phys. Rev. Lett. , vol.84 , pp. 1890-1893
    • Parlitz, U.1    Merkwirth, C.2
  • 13
    • 0034271844 scopus 로고    scopus 로고
    • Signal detection using the radial basis function coupled map lattice
    • Oct
    • H. Leung, G. Hennessey, and A. Drosopoulos, “Signal detection using the radial basis function coupled map lattice,” IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1133–1151, Oct. 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.5 , pp. 1133-1151
    • Leung, H.1    Hennessey, G.2    Drosopoulos, A.3
  • 14
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation and signal processing
    • Cambridge, MA: MIT Press
    • V. Vapnik, S. Golowich, and A. Smola, “Support vector method for function approximation, regression estimation and signal processing,” in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1996, vol. 9, pp. 281–287.
    • (1996) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 15
    • 0031375732 scopus 로고    scopus 로고
    • Nonlinear prediction of chaotic time series using support vector machines
    • Amelia Island, FL
    • S. Mukherjee, E. Osuna, and F. Girosi, “Nonlinear prediction of chaotic time series using support vector machines,” in Proc. IEEE NNSP’97, Amelia Island, FL, 1997, pp. 24–26.
    • (1997) Proc. IEEE NNSP’97 , pp. 24-26
    • Mukherjee, S.1    Osuna, E.2    Girosi, F.3
  • 16
    • 0026846001 scopus 로고
    • A maximum likehood approach to data association
    • D. Avitzour, “A maximum likehood approach to data association,” IEEE Trans. Aerosp. Electron. Syst., vol. 28, no. 2, pp. 560–566, 1992.
    • (1992) IEEE Trans. Aerosp. Electron. Syst. , vol.28 , Issue.2 , pp. 560-566
    • Avitzour, D.1
  • 17
    • 58649123087 scopus 로고    scopus 로고
    • A linearly constrained least squares approach for multisensor data fusion
    • Orlando, FL
    • Y. Zhou and H. Leung, “A linearly constrained least squares approach for multisensor data fusion,” in Proc. SPIEs 11th Annu. Symp. AeroSense, Orlando, FL, 1997.
    • (1997) Proc. SPIEs 11th Annu. Symp. AeroSense
    • Zhou, Y.1    Leung, H.2
  • 18
    • 0002254167 scopus 로고
    • On minimum entropy deconvolution
    • New York: Academic
    • D. Donoho, “On minimum entropy deconvolution,” in Applied Time Series Analysis II. New York: Academic, 1981, pp. 565–608.
    • (1981) Applied Time Series Analysis II , pp. 565-608
    • Donoho, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.