Indexed keywords
HISTOGRAM;
NOISE VARIANCE;
POST PROCESSING TASKS;
ROOT MEAN SQUARED ERROR (RMSE);
COMPUTER SIMULATION;
DATA ACQUISITION;
ERROR ANALYSIS;
MAXIMUM LIKELIHOOD;
MONTE CARLO METHODS;
SPURIOUS SIGNAL NOISE;
MAGNETIC RESONANCE IMAGING;
ARTICLE;
HISTOGRAM;
MAXIMUM LIKELIHOOD METHOD;
MONTE CARLO METHOD;
NOISE VARIANCE ESTIMATION METHOD;
NUCLEAR MAGNETIC RESONANCE IMAGING;
PRIORITY JOURNAL;
TECHNIQUE;
ARTIFACT;
ARTIFICIAL INTELLIGENCE;
AUTOMATED PATTERN RECOGNITION;
COMPUTER ASSISTED DIAGNOSIS;
EVALUATION;
IMAGE ENHANCEMENT;
METHODOLOGY;
REPRODUCIBILITY;
REVIEW;
SENSITIVITY AND SPECIFICITY;
STATISTICAL ANALYSIS;
STATISTICAL MODEL;
ARTIFACTS;
ARTIFICIAL INTELLIGENCE;
DATA INTERPRETATION, STATISTICAL;
IMAGE ENHANCEMENT;
IMAGE INTERPRETATION, COMPUTER-ASSISTED;
LIKELIHOOD FUNCTIONS;
MAGNETIC RESONANCE IMAGING;
PATTERN RECOGNITION, AUTOMATED;
REPRODUCIBILITY OF RESULTS;
SENSITIVITY AND SPECIFICITY;
1
20744437138
New denoising scheme for magnetic resonance spectroscopy signals
Ahmed O A 2005 New denoising scheme for magnetic resonance spectroscopy signals IEEE Trans. Med. Imaging 24 809-16
(2005)
IEEE Trans. Med. Imaging
, vol.24
, Issue.6
, pp. 809-816
Ahmed, O.A.1
2
0142106326
Automatic change detection in multimodal serial MRI: Application to multiple sclerosis lesion evolution
Bosc M et al. 2003 Automatic change detection in multimodal serial MRI: application to multiple sclerosis lesion evolution Neuroimage 20 643-56
(2003)
Neuroimage
, vol.20
, Issue.2
, pp. 643-656
Bosc, M.1
3
0027608265
Automatic detection of brain contours in MRI data sets
Brummer M E et al. 1993 Automatic detection of brain contours in MRI data sets IEEE Trans. Med. Imaging 12 153-68
(1993)
IEEE Trans. Med. Imaging
, vol.12
, Issue.2
, pp. 153-168
Brummer, M.E.1
4
23844441918
An automatic method for estimating noise-induced signal variance in magnitude-reconstructed magnetic resonance images
Chang L-C et al. 2005 An automatic method for estimating noise-induced signal variance in magnitude-reconstructed magnetic resonance images SPIE Medical Imaging 2005: Image Processing vol 5747 pp 1136-42
(2005)
SPIE Medical Imaging 2005: Image Processing
, vol.5747
, pp. 1136-1142
Chang, L.-C.1
5
21544432712
Brainweb: Online interface to a 3D MRI simulated brain database
Cocosco C A et al. 1997 Brainweb: online interface to a 3D MRI simulated brain database Neuroimage 5 S425 (http://www.bic.mni.mcgill.ca/brainweb/)
(1997)
Neuroimage
, vol.5
, pp. 425
Cocosco, C.A.1
6
3042853378
Bayesian analysis of dynamic magnetic resonance breast images
de Pasquale F et al. 2004 Bayesian analysis of dynamic magnetic resonance breast images Appl. Stat. 53 475-93
(2004)
Appl. Stat.
, vol.53
, pp. 475-493
De Pasquale, F.1
7
0031149945
Information in magnetic resonance images: Evaluation of signal, noise and contrast
De Wilde J P et al. 1997 Information in magnetic resonance images: evaluation of signal, noise and contrast Med. Biol. Eng. Comput. 35 259-65
(1997)
Med. Biol. Eng. Comput.
, vol.35
, Issue.3
, pp. 259-265
De Wilde, J.P.1
9
0028839871
The Rician distribution of noisy MRI data
Gudbjartsson H and Patz S 1995 The Rician distribution of noisy MRI data Magn. Reson. Med. 34 910-4
(1995)
Magn. Reson. Med.
, vol.34
, Issue.6
, pp. 910-914
Gudbjartsson, H.1
Patz, S.2
10
0021948756
Measurement of signal intensities in the presence of noise in MR images
Henkelman R M 1985 Measurement of signal intensities in the presence of noise in MR images Med. Phys. 12 232-3
(1985)
Med. Phys.
, vol.12
, Issue.2
, pp. 232-233
Henkelman, R.M.1
11
0024438651
Measuring signal-to-noise ratios in MR imaging
Kaufman L et al. 1989 Measuring signal-to-noise ratios in MR imaging Radiology 173 265-7
(1989)
Radiology
, vol.173
, pp. 265-267
Kaufman, L.1
13
0027317240
An unbiased signal-to-noise ratio measure for magnetic resonance images
McGibney G and Smith M R 1993 An unbiased signal-to-noise ratio measure for magnetic resonance images Med. Phys. 20 1077-8
(1993)
Med. Phys.
, vol.20
, Issue.4
, pp. 1077-1078
McGibney, G.1
Smith, M.R.2
14
0021863486
Noise and filtration in magnetic resonance imaging
McVeigh E R et al. 1985 Noise and filtration in magnetic resonance imaging Med. Phys. 12 586-91
(1985)
Med. Phys.
, vol.12
, Issue.5
, pp. 586-591
McVeigh, E.R.1
16
0027318510
Signal-to-noise measures for magnetic resonance imagers
Murphy B W et al. 1993 Signal-to-noise measures for magnetic resonance imagers Magn. Reson. Imaging 11 425-8
(1993)
Magn. Reson. Imaging
, vol.11
, Issue.3
, pp. 425-428
Murphy, B.W.1
17
0033322132
Wavelet based Rician noise removal for magnetic resonance images
Nowak R D 1999 Wavelet based Rician noise removal for magnetic resonance images IEEE Trans. Image Process. 10 1408-19
(1999)
IEEE Trans. Image Process.
, vol.8
, Issue.10
, pp. 1408-1419
Nowak, R.D.1
18
20444494054
Estimating intensity variance due to noise in registered images: Applications to diffusion tensor MRI
Rohde G K et al. 2005 Estimating intensity variance due to noise in registered images: applications to diffusion tensor MRI Neuroimage 26 673-84
(2005)
Neuroimage
, vol.26
, Issue.3
, pp. 673-684
Rohde, G.K.1
20
27644530249
Multiple hypothesis mapping of functional MRI data in orthogonal and complex wavelet domains
Sendur L et al. 2005 Multiple hypothesis mapping of functional MRI data in orthogonal and complex wavelet domains IEEE Trans. Med. Imaging 53 3413-26
(2005)
IEEE Trans. Med. Imaging
, vol.53
, pp. 3413-3426
Sendur, L.1
21
0030425801
Quantification and improvement of the signal-to-noise ratio in a magnetic resonance image acquisition procedure
Sijbers J et al. 1996 Quantification and improvement of the signal-to-noise ratio in a magnetic resonance image acquisition procedure Magn. Reson. Imaging 14 1157-63
(1996)
Magn. Reson. Imaging
, vol.14
, Issue.10
, pp. 1157-1163
Sijbers, J.1
22
0031983116
Estimation of noise from magnitude MR images
Sijbers J et al. 1998 Estimation of noise from magnitude MR images Magn. Reson. Imaging 16 87-90
(1998)
Magn. Reson. Imaging
, vol.16
, Issue.1
, pp. 87-90
Sijbers, J.1
23
0032653871
Parameter estimation from magnitude MR images
Sijbers J et al. 1999 Parameter estimation from magnitude MR images Int. J. Imaging Syst. Technol. 10 109-14
(1999)
Int. J. Imaging Syst. Technol.
, vol.10
, Issue.2
, pp. 109-114
Sijbers, J.1
26
0034745001
Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm
Zhang Y et al. 2001 Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm IEEE Trans. Med. Imaging 20 45-57
(2001)
IEEE Trans. Med. Imaging
, vol.20
, Issue.1
, pp. 45-57
Zhang, Y.1