-
1
-
-
24044435942
-
Reducing multiclass to binary: a unifying approach for margin classifiers
-
Allwein E., Schapire R., and Singer Y. Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1 (2000) 113-141
-
(2000)
J. Mach. Learn. Res.
, vol.1
, pp. 113-141
-
-
Allwein, E.1
Schapire, R.2
Singer, Y.3
-
3
-
-
0003573244
-
-
Kluwer Academic, Boston, Norwell, MA
-
Bourlard H., and Morgan N. Connectionist Speech Recognition: A Hybrid Approach (1994), Kluwer Academic, Boston, Norwell, MA
-
(1994)
Connectionist Speech Recognition: A Hybrid Approach
-
-
Bourlard, H.1
Morgan, N.2
-
5
-
-
34047134848
-
-
Chih-Chung, C., Chih-Jen, L., 2004. LibSVM: a library for Support Vector Machines. Available from: .
-
-
-
-
7
-
-
34047093701
-
-
Collobert, R., SVMTorch: a Support Vector Machine for large-scale regression and classification problems, IDIAP. Available from: .
-
-
-
-
8
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
Crammer K., and Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2 (2001) 265-292
-
(2001)
J. Mach. Learn. Res.
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
9
-
-
46149084230
-
-
Ech-Cherif, A., Kohili, M., Benyettou, A., Benyettou, M., 2002. Lagrangian Support Vector Machines for phoneme classification. In: Proc. 9th Internat. Conf. on Neural Information Processing (ICONIP'02), Vol. 5, Singapore, pp. 2507-2511.
-
-
-
-
10
-
-
0034849711
-
-
Fine, S., Navratil, J., Gopinath, R., 2001. A hybrid GMM/SVM approach to speaker identification. In: Proc. Internat. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Salt Lake City, UT, USA, Vol. 1, pp. 417-420.
-
-
-
-
11
-
-
19044382587
-
Round robin classification
-
Fürnkranz J. Round robin classification. J. Mach. Learn. Res. 2 (2002) 721-747
-
(2002)
J. Mach. Learn. Res.
, vol.2
, pp. 721-747
-
-
Fürnkranz, J.1
-
12
-
-
34047171171
-
-
Ganapathiraju, A., 2002. Support vector machines for speech recognition. PhD Thesis, Mississipi State University.
-
-
-
-
13
-
-
34047173866
-
-
Ganapathiraju, A., Hamaker, J., Picone, J., 2000. Hybrid SVM/HMM architectures for speech recognition. In: Proc. 2000 Speech Transcription Workshop, Maryland, USA, Vol. 4, pp. 504-507.
-
-
-
-
15
-
-
34047165668
-
-
Gangashetty, S., Sekhar, C., Yegnanarayana, B., 2005. Combining evidence from multiple classifiers for recognition of consonant-vowel units of speech in multiple languages. In: Proc. Internat. Conf. on Intelligent Sensing and Information Processing, Chennai, India, pp. 387-391.
-
-
-
-
16
-
-
34047139732
-
-
García-Cabellos, J., Peláez-Moreno, C., Gallardo-Antolín, A., Pérez-Cruz, F., Díaz-de-María, F., 2004. SVM classifiers for ASR: a discussion about parameterization. In: Proc. EUSIPCO 2004, Wien, Austria, pp. 2067-2070.
-
-
-
-
17
-
-
0038359548
-
A probabilistic framework for segment-based speech recognition
-
Glass J.R. A probabilistic framework for segment-based speech recognition. Comput. Speech Language 17 (2003) 137-152
-
(2003)
Comput. Speech Language
, vol.17
, pp. 137-152
-
-
Glass, J.R.1
-
18
-
-
34047154291
-
-
Hamaker, J., Picone, J., 2003. Advances in speech recognition using sparse Bayesian methods, unpublished (January 2003).
-
-
-
-
19
-
-
3543130220
-
-
Hamaker, J., Picone, J., Ganapathiraju, A. 2002. A sparse modeling approach to speech recognition based on relevance vector machines. In: Proc. Internat. Conf. on Spoken Language Processing, Denver, CO, USA, Vol. 2, pp. 1001-1004.
-
-
-
-
20
-
-
0036505670
-
A comparison of methods for multi-class support vector machines
-
Hsu C., and Lin C. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networks 13 2 (2002) 415-425
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.1
Lin, C.2
-
21
-
-
0025692769
-
-
Iso, K., Watanabe, T., 1990. Speaker-independent word recognition using a neural prediction model. In: Proc. Internat. Conf.e on Acoustics, Speech and Signal Processing (ICASSP), Alburquerque, NM, USA, pp. 441-444.
-
-
-
-
22
-
-
34047172366
-
-
Jaakkola, T., Haussler, D., 1998. Exploiting generative models in discriminative classifiers. Technical Report, Department of Computer Science, University of California. Available from: .
-
-
-
-
24
-
-
0037735753
-
Advances in kernel methods-support vector learning
-
Schölkopf B., Burges C.J.C., and Smola A.J. (Eds), MIT Press, Cambridge, MA
-
Joachims T. Advances in kernel methods-support vector learning. In: Schölkopf B., Burges C.J.C., and Smola A.J. (Eds). Making Large Scale SVM Learning Practical (1999), MIT Press, Cambridge, MA 169-184
-
(1999)
Making Large Scale SVM Learning Practical
, pp. 169-184
-
-
Joachims, T.1
-
25
-
-
34250627864
-
-
Le, Q., Bengio, S., 2003. Client dependent GMM-SVM models for speaker verification. In: Internat. Conf. on Artificial Neural Networks, ICANN/ICONIP. Springer-Verlag, Berlin, pp. 443-451.
-
-
-
-
26
-
-
34047127202
-
-
Lin, H.T., Lin, C.J., Weng, R.C., 2003. A note on Platt's probabilistic outputs for Support Vector Machines. Technical Report, Department of computer science and information engineering, National Taiwan University.
-
-
-
-
27
-
-
0034842453
-
-
Ma, C., Randolph, M., Drish, J., 2001. A Support Vector Machines-based rejection technique for speech recognition. In: Proc. Internat. Conf. Acoustics, Speech and Signal Processing (ICASSP), Salt Lake City, UT, USA, Vol. 1, pp. 381-384.
-
-
-
-
28
-
-
33745467338
-
-
Martín-Iglesias, D., Bernal-Chaves, J., Peláez-Moreno, C., Gallardo-Antolín, A., Díaz-de-María, F., 2005. A speech recognizer based on multiclass SVMs with HMM-guided segmentation. In: Nonlinear Analyses and Algorithms for Speech Processing. Lecture Notes in Computer Science, Vol. LNAI 3817, Springer, pp. 256-266.
-
-
-
-
29
-
-
34047162756
-
-
Moreno, A., 1998. SpeechDat documentation [cd-rom], ver 1.
-
-
-
-
30
-
-
0035441377
-
Weighted least squares training of support vector classifiers leading to compact and adaptive schemes
-
Navia-Vázquez A., Pérez-Cruz F., Artés-Rodríguez A., and Figueiras-Vidal A. Weighted least squares training of support vector classifiers leading to compact and adaptive schemes. IEEE Trans. Neural Networks 12 5 (2001) 1047-1059
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, Issue.5
, pp. 1047-1059
-
-
Navia-Vázquez, A.1
Pérez-Cruz, F.2
Artés-Rodríguez, A.3
Figueiras-Vidal, A.4
-
31
-
-
0031334889
-
-
Osuna, E., Freund, R., Girosi, F., 1997. An improved training algorithm for Support Vector Machines. In: IEEE Workshop on Neural Networks for Signal Processing, Amelia Island, FL, USA, pp. 276-285.
-
-
-
-
32
-
-
34047183521
-
-
Platt, J.C., 1999. Probabilities for SV machines. In: Advances in Large Margin Classifiers. MIT Press, pp. 61-74.
-
-
-
-
34
-
-
0028996602
-
-
Reichl, W., Ruske, G., 1995. A hybrid RBF-HMM system for continuous speech recognition. In: Proc. Internat. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Detroit, MI, USA, pp. 3335-3338.
-
-
-
-
35
-
-
34047151632
-
-
Robinson, T., Hochberg, M., Renals, S., 1995. The Use of Recurrent Neural Networks in Continuous Speech Recognition. In: Automatic Speech and Speaker Recognition-Advanced Topics, Kluwer Academic Publishers, pp. 159-184 (Chap. 19).
-
-
-
-
36
-
-
0024909963
-
-
Sakoe, H., Isotani, R., Yoshida, K., Iso, K., Watanabe, T., 1989. Speaker-independent word recognition using dynamic programming neural networks. In: Proc. Internat. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Glasgow, Scotland, pp. 439-442.
-
-
-
-
38
-
-
34047100156
-
-
Sekhar, C., Lee, W., Takeda, K., Itakura, F., 2003. Acoustic modelling of subword units using Support Vector Machines. In: Workshop on spoken language processing, Mumbai, India.
-
-
-
-
39
-
-
85006763464
-
Support vector machine with Dynamic Time-Alignment Kernel for speech recognition
-
Aalborg, Denmark
-
Shimodaira H., Noma K., Nakai M., and Sagayama S. Support vector machine with Dynamic Time-Alignment Kernel for speech recognition. Proc. Eurospeech (2001), Aalborg, Denmark 1841-1844
-
(2001)
Proc. Eurospeech
, pp. 1841-1844
-
-
Shimodaira, H.1
Noma, K.2
Nakai, M.3
Sagayama, S.4
-
40
-
-
84880863499
-
-
Shimodaira, H., Noma, K., Nakai, M., 2002. Dynamic time-alignment kernel in Support Vector Machine. In: Advances in Neural Information Processing Systems 14, Vol. 2. MIT Press, Cambridge, MA, pp. 921-928.
-
-
-
-
41
-
-
0036299139
-
-
Smith, N., Gales, M., 2002. Using SVMs and discriminative models for speech recognition. In: IEEE Internat. Conf. on Acoustics, Speech and Signal Processing, Vol. 1, Orlando, FL, USA, pp. 77-80.
-
-
-
-
42
-
-
84898996216
-
-
Smith, N., Gales, M., 2002. Speech recognition using SVMs. In: Advances in Neural Information Processing Systems 14, Vol. 14. MIT Press, Cambridge, MA, pp. 1197-1204.
-
-
-
-
43
-
-
85009080427
-
-
Smith, N., Niranjan, M., 2000. Data-dependent kernels in SVM classification of speech patterns. In: Proc. Internat. Conf. on Spoken Language Processing (ICSLP), Beijing, China, Vol. 1, pp. 297-300.
-
-
-
-
44
-
-
85009070831
-
-
Stadermann, J., Rigoll, G., 2004. A hybrid SVM/HMM acoustic modeling approach to automatic speech recognition. In: Proc. Internat. Conf. on Spoken Language Processing (ICSLP), Jeju Island, Korea, pp. 661-664.
-
-
-
-
45
-
-
0026368806
-
-
Tebelskis, J., Waibel, A., Petek, B., Schmidbauer, O., 1991. Continuous speech recognition using predictive neural networks. In: Proc. Internat. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, pp. 61-64.
-
-
-
-
47
-
-
0035101535
-
A survey of hybrid ANN/HMM models for automatic speech recognition
-
Trentin E., and Gori M. A survey of hybrid ANN/HMM models for automatic speech recognition. Neurocomputing 37 (2001) 91-126
-
(2001)
Neurocomputing
, vol.37
, pp. 91-126
-
-
Trentin, E.1
Gori, M.2
-
50
-
-
34047168552
-
-
Varga, A., Steenneken, J., Tolimson, M., Jones, D., 1992. The NOISEX-92 study on the effect of additive noise on automatic speech recognition. Technical Report, DRA Speech Research Unit.
-
-
-
-
51
-
-
33748463352
-
Band-pass filtering of the time sequences of spectral parameters for robust wireless speech recognition
-
Vicente-Peña J., Gallardo-Antolín A., Peláez-Moreno C., and Díaz-de-María F. Band-pass filtering of the time sequences of spectral parameters for robust wireless speech recognition. Speech Commun. 48 10 (2006) 1379-1398
-
(2006)
Speech Commun.
, vol.48
, Issue.10
, pp. 1379-1398
-
-
Vicente-Peña, J.1
Gallardo-Antolín, A.2
Peláez-Moreno, C.3
Díaz-de-María, F.4
-
52
-
-
85143189407
-
-
Wan, V., Renals, S., 2003. Support vector machine speaker verification methodology. In: Internat. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Hong Kong, Vol. 2, pp. 221-224.
-
-
-
-
54
-
-
34047134847
-
-
Weston, J., Watkins, C., 1999. Multi-class Support Vector Machines. In: M. Verleysen (Ed.), Proc. European Symposium on Artificial Neural Networks.
-
-
-
-
55
-
-
51349159085
-
Probability estimates for multi-class classification by pairwise coupling
-
Wu T.F., Lin C.J., and Weng R.C. Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5 (2004) 975-1005
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 975-1005
-
-
Wu, T.F.1
Lin, C.J.2
Weng, R.C.3
-
56
-
-
34047189595
-
-
Young, S., 1995. HTK-Hidden Markov Model toolkit (ver 2.1), Cambridge University.
-
-
-
|