-
1
-
-
0036013593
-
Statistical mechanics of complex networks
-
ALBERT, R. AND BARABÁSI, A.-L. (2002). Statistical mechanics of complex networks. Rev. Modern Physics 74, 47-97.
-
(2002)
Rev. Modern Physics
, vol.74
, pp. 47-97
-
-
ALBERT, R.1
BARABÁSI, A.-L.2
-
4
-
-
8744265454
-
-
BENJAMINI, I., RESTEN, H., PERES, Y. AND SCHRAMM, O. (2004). The geometry of the uniform spanning forests: transitions in dimensions 4, 8, 12,.... Ann. Math. 160, 465-491.
-
BENJAMINI, I., RESTEN, H., PERES, Y. AND SCHRAMM, O. (2004). The geometry of the uniform spanning forests: transitions in dimensions 4, 8, 12,.... Ann. Math. 160, 465-491.
-
-
-
-
6
-
-
35248850625
-
Degree distribution of the FKP network model
-
Automata, Languages and Programming, Springer, Heidelberg, pp
-
BERGER, N. et al. (2003). Degree distribution of the FKP network model. In Automata, Languages and Programming (Lecture Notes Comput. Sci. 2719), Springer, Heidelberg, pp. 725-738.
-
(2003)
Lecture Notes Comput. Sci
, vol.2719
, pp. 725-738
-
-
BERGER, N.1
-
7
-
-
33845655493
-
Graph diameter in long-range percolation
-
Submitted
-
BISKUP, M. (2004). Graph diameter in long-range percolation. Submitted.
-
(2004)
-
-
BISKUP, M.1
-
8
-
-
8744235217
-
On scaling of the chemical distance in long-range percolation models
-
BISKUP, M. (2004). On scaling of the chemical distance in long-range percolation models. Ann. Prob. 32, 2938-2977.
-
(2004)
Ann. Prob
, vol.32
, pp. 2938-2977
-
-
BISKUP, M.1
-
9
-
-
2542530739
-
The diameter of a scale-free random graph
-
BOLLABÁS, B. AND RIORDAN, O. M. (2003). The diameter of a scale-free random graph. Combinatorica 24, 5-34.
-
(2003)
Combinatorica
, vol.24
, pp. 5-34
-
-
BOLLABÁS, B.1
RIORDAN, O.M.2
-
10
-
-
0037058980
-
The average distance in a random graph with given expected degrees
-
CHUNG, F. AND LU, L. (2002). The average distance in a random graph with given expected degrees. Proc. Nat. Acad. Sci. USA 99, 15879-15882.
-
(2002)
Proc. Nat. Acad. Sci. USA
, vol.99
, pp. 15879-15882
-
-
CHUNG, F.1
LU, L.2
-
11
-
-
84906264352
-
The average distance in a random graph with given expected degrees
-
This is an expanded version of [10
-
CHUNG, F. AND LU, L. (2003). The average distance in a random graph with given expected degrees. Internet Math. 1, 91-113. (This is an expanded version of [10].)
-
(2003)
Internet Math
, vol.1
, pp. 91-113
-
-
CHUNG, F.1
LU, L.2
-
12
-
-
0037423295
-
Scale-free networks are ultrasmall
-
COHEN, R. AND HAVLIN, S. (2003). Scale-free networks are ultrasmall. Phys. Rev. Lett. 90, 058701.
-
(2003)
Phys. Rev. Lett
, vol.90
, pp. 058701
-
-
COHEN, R.1
HAVLIN, S.2
-
13
-
-
0036335842
-
The diameter of a long-range percolation graph
-
COPPERSMITH, D., GAMARNIK, D. AND SVIRIDENKO, M. (2002). The diameter of a long-range percolation graph. Random Structures Algorithms 21, 1-13.
-
(2002)
Random Structures Algorithms
, vol.21
, pp. 1-13
-
-
COPPERSMITH, D.1
GAMARNIK, D.2
SVIRIDENKO, M.3
-
16
-
-
84869169288
-
Heuristically optimized trade-offs: A new paradigm for power laws in the internet
-
Automata, Languages and Programming, Springer, Berlin, pp
-
FABRIKANT, A., KOUTSOUPIAS, E. AND PAPADIMITRIOU, C. H. (2002). Heuristically optimized trade-offs: a new paradigm for power laws in the internet. In Automata, Languages and Programming (Lecture Notes Comput. Sci. 2380), Springer, Berlin, pp. 110-122.
-
(2002)
Lecture Notes Comput. Sci
, vol.2380
, pp. 110-122
-
-
FABRIKANT, A.1
KOUTSOUPIAS, E.2
PAPADIMITRIOU, C.H.3
-
17
-
-
29844452453
-
Navigation in small world networks, a scale-free continuum model
-
M03/33, EECS Department, University of California, Berkeley
-
FRANCESCHETTI, M. AND MEESTER, R. (2004). Navigation in small world networks, a scale-free continuum model. Tech. Rep. UCB/ERL M03/33, EECS Department, University of California, Berkeley.
-
(2004)
Tech. Rep. UCB/ERL
-
-
FRANCESCHETTI, M.1
MEESTER, R.2
-
18
-
-
37649029119
-
Connectivity distribution of spatial networks
-
HERMANN, C., BARTHÉLÉMY, M. AND PROVERO, P. (2003). Connectivity distribution of spatial networks. Phys. Rev. E 68, 026128.
-
(2003)
Phys. Rev. E
, vol.68
, pp. 026128
-
-
HERMANN, C.1
BARTHÉLÉMY, M.2
PROVERO, P.3
-
19
-
-
0343441557
-
Navigation in the small world
-
KLEINBERG, J. M. (2000). Navigation in the small world. Nature 406, 845.
-
(2000)
Nature
, vol.406
, pp. 845
-
-
KLEINBERG, J.M.1
-
20
-
-
0003345886
-
Continuum Percolation
-
Cambridge University Press
-
MEESTER, R. AND ROY, R. (1996). Continuum Percolation (Camb. Tracts Math. 119). Cambridge University Press.
-
(1996)
Camb. Tracts Math
, vol.119
-
-
MEESTER, R.1
ROY, R.2
-
21
-
-
0038718854
-
The structure and function of complex networks
-
NEWMAN, M. E. J. (2003). The structure and function of complex networks. SIAM Rev. 45, 167-256.
-
(2003)
SIAM Rev
, vol.45
, pp. 167-256
-
-
NEWMAN, M.E.J.1
-
22
-
-
0035470870
-
A spatial central limit theorem with applications to percolation, epidemics and Boolean models
-
PENROSE, M. D. (2001). A spatial central limit theorem with applications to percolation, epidemics and Boolean models. Ann. Prob. 29, 1515-1546.
-
(2001)
Ann. Prob
, vol.29
, pp. 1515-1546
-
-
PENROSE, M.D.1
-
24
-
-
0004081447
-
-
Princeton University Press
-
WATTS, D. J. (1999). Small Worlds. Princeton University Press.
-
(1999)
Small Worlds
-
-
WATTS, D.J.1
-
25
-
-
0032482432
-
Collective dynamics of 'small world' networks
-
WATTS, D. J. AND STROGATZ, S. H. (1998). Collective dynamics of 'small world' networks. Nature 393, 440-442.
-
(1998)
Nature
, vol.393
, pp. 440-442
-
-
WATTS, D.J.1
STROGATZ, S.H.2
|