-
1
-
-
0000136970
-
Sharpness of the phase transition in percolation models
-
AIZENMAN, M. and BARSKY, D. J. (1987). Sharpness of the phase transition in percolation models. Comm. Math. Phys. 108 489-526.
-
(1987)
Comm. Math. Phys.
, vol.108
, pp. 489-526
-
-
Aizenman, M.1
Barsky, D.J.2
-
3
-
-
0002005827
-
The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation
-
ALEXANDER, K., CHAYES, J. T. and CHAYES, L. (1990). The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation. Comm. Math. Phys. 131 1-51.
-
(1990)
Comm. Math. Phys.
, vol.131
, pp. 1-51
-
-
Alexander, K.1
Chayes, J.T.2
Chayes, L.3
-
5
-
-
0030522185
-
On the chemical distance for supercritical Bernoulli percolation
-
ANTAL, P. and PISZTORA, A. (1996). On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 1036-1048.
-
(1996)
Ann. Probab.
, vol.24
, pp. 1036-1048
-
-
Antal, P.1
Pisztora, A.2
-
6
-
-
0035610528
-
The diameter of long-range percolation clusters on finite cycles
-
BENJAMINI, I. and BERGER, N. (2001). The diameter of long-range percolation clusters on finite cycles. Random Structures Algorithms 19 102-111.
-
(2001)
Random Structures Algorithms
, vol.19
, pp. 102-111
-
-
Benjamini, I.1
Berger, N.2
-
7
-
-
8744265454
-
The geometry of the uniform spanning forests: Transitions in dimensions 4, 8, 12, ...
-
To appear
-
BENJAMINI, I., KESTEN, H., PERES, Y. and SCHRAMM, O. (2004). The geometry of the uniform spanning forests: Transitions in dimensions 4, 8, 12, .... Ann. Math. To appear.
-
(2004)
Ann. Math.
-
-
Benjamini, I.1
Kesten, H.2
Peres, Y.3
Schramm, O.4
-
8
-
-
0036011687
-
Transience, recurrence and critical behavior for long-range percolation
-
BERGER, N. (2002). Transience, recurrence and critical behavior for long-range percolation. Comm. Math. Phys. 226 531-558.
-
(2002)
Comm. Math. Phys.
, vol.226
, pp. 531-558
-
-
Berger, N.1
-
10
-
-
0000393829
-
Density and uniqueness in percolation
-
BURTON, R. M. and KEANE, M. (1989). Density and uniqueness in percolation. Comm. Math. Phys. 121 501-505.
-
(1989)
Comm. Math. Phys.
, vol.121
, pp. 501-505
-
-
Burton, R.M.1
Keane, M.2
-
13
-
-
0003310674
-
Large deviations for three dimensional supercritical percolation
-
CERF, R. (2000). Large deviations for three dimensional supercritical percolation. Astérisque 267 vi+177.
-
(2000)
Astérisque
, vol.267
-
-
Cerf, R.1
-
15
-
-
0001295837
-
Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses
-
GANDOLFI, A., KEANE, M. S. and NEWMAN, C. M. (1992). Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses. Probab. Theory Related Fields 92 511-527.
-
(1992)
Probab. Theory Related Fields
, vol.92
, pp. 511-527
-
-
Gandolfi, A.1
Keane, M.S.2
Newman, C.M.3
-
16
-
-
0001626028
-
The supercritical phase of percolation is well behaved
-
GRIMMETT, G. R. and MARSTRAND, J. M. (1990). The supercritical phase of percolation is well behaved. Proc. Roy. Soc. London Ser. A 430 439-457.
-
(1990)
Proc. Roy. Soc. London Ser. A
, vol.430
, pp. 439-457
-
-
Grimmett, G.R.1
Marstrand, J.M.2
-
17
-
-
0034336207
-
The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents
-
HARA, T. and SLADE, G. (2000). The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents. J. Statist. Phys. 99 1075-1168.
-
(2000)
J. Statist. Phys.
, vol.99
, pp. 1075-1168
-
-
Hara, T.1
Slade, G.2
-
18
-
-
0034345450
-
The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion
-
HARA, T. and SLADE, G. (2000). The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion. J. Math. Phys. 41 1244-1293.
-
(2000)
J. Math. Phys.
, vol.41
, pp. 1244-1293
-
-
Hara, T.1
Slade, G.2
-
20
-
-
8744303260
-
Coincidence of critical points in percolation problems
-
In Russian
-
MENSHIKOV, M. V. (1986). Coincidence of critical points in percolation problems. Dokl. Akad. Nauk SSSR 288 1308-1311. (In Russian.)
-
(1986)
Dokl. Akad. Nauk SSSR
, vol.288
, pp. 1308-1311
-
-
Menshikov, M.V.1
-
21
-
-
0002687371
-
The small-world problem
-
MILGRAM, S. (1967). The small-world problem. Psychology Today 1 61-67.
-
(1967)
Psychology Today
, vol.1
, pp. 61-67
-
-
Milgram, S.1
-
22
-
-
0000314880
-
s percolation models: The existence of a transition for s ≤ 2
-
s percolation models: The existence of a transition for s ≤ 2. Comm. Math. Phys. 104 547-571.
-
(1986)
Comm. Math. Phys.
, vol.104
, pp. 547-571
-
-
Newman, C.M.1
Schulman, L.S.2
-
23
-
-
4243757085
-
Long-range percolation in one dimension
-
SCHULMAN, L. S. (1983). Long-range percolation in one dimension. J. Phys. A 16 L639-L641.
-
(1983)
J. Phys. A
, vol.16
-
-
Schulman, L.S.1
-
24
-
-
0041869040
-
Critical percolation in the plane. I. Conformal invariance and Cardy's formula. II. Continuum scaling limit
-
SMIRNOV, S. (2001). Critical percolation in the plane. I. Conformal invariance and Cardy's formula. II. Continuum scaling limit. C. R. Acad. Sci. Paris Sér. I Math. 333 239-244.
-
(2001)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.333
, pp. 239-244
-
-
Smirnov, S.1
-
25
-
-
0035527905
-
Critical exponents for two-dimensional percolation
-
SMIRNOV, S. and WERNER, W. (2001). Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 729-744.
-
(2001)
Math. Res. Lett.
, vol.8
, pp. 729-744
-
-
Smirnov, S.1
Werner, W.2
-
26
-
-
0032482432
-
Collective dynamics of "small-world" networks
-
WATTS, D. J. and STROGATZ, S. H. (1998). Collective dynamics of "small-world" networks. Nature 303 440-442.
-
(1998)
Nature
, vol.303
, pp. 440-442
-
-
Watts, D.J.1
Strogatz, S.H.2
|