메뉴 건너뛰기




Volumn 32, Issue 4, 2004, Pages 2938-2977

On the scaling of the chemical distance in long-range percolation models

Author keywords

Chemical distance; Long range percolation; Renormalization; Small world phenomena

Indexed keywords


EID: 8744235217     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/009117904000000577     Document Type: Article
Times cited : (128)

References (26)
  • 1
    • 0000136970 scopus 로고
    • Sharpness of the phase transition in percolation models
    • AIZENMAN, M. and BARSKY, D. J. (1987). Sharpness of the phase transition in percolation models. Comm. Math. Phys. 108 489-526.
    • (1987) Comm. Math. Phys. , vol.108 , pp. 489-526
    • Aizenman, M.1    Barsky, D.J.2
  • 3
    • 0002005827 scopus 로고
    • The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation
    • ALEXANDER, K., CHAYES, J. T. and CHAYES, L. (1990). The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation. Comm. Math. Phys. 131 1-51.
    • (1990) Comm. Math. Phys. , vol.131 , pp. 1-51
    • Alexander, K.1    Chayes, J.T.2    Chayes, L.3
  • 5
    • 0030522185 scopus 로고    scopus 로고
    • On the chemical distance for supercritical Bernoulli percolation
    • ANTAL, P. and PISZTORA, A. (1996). On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 1036-1048.
    • (1996) Ann. Probab. , vol.24 , pp. 1036-1048
    • Antal, P.1    Pisztora, A.2
  • 6
    • 0035610528 scopus 로고    scopus 로고
    • The diameter of long-range percolation clusters on finite cycles
    • BENJAMINI, I. and BERGER, N. (2001). The diameter of long-range percolation clusters on finite cycles. Random Structures Algorithms 19 102-111.
    • (2001) Random Structures Algorithms , vol.19 , pp. 102-111
    • Benjamini, I.1    Berger, N.2
  • 7
    • 8744265454 scopus 로고    scopus 로고
    • The geometry of the uniform spanning forests: Transitions in dimensions 4, 8, 12, ...
    • To appear
    • BENJAMINI, I., KESTEN, H., PERES, Y. and SCHRAMM, O. (2004). The geometry of the uniform spanning forests: Transitions in dimensions 4, 8, 12, .... Ann. Math. To appear.
    • (2004) Ann. Math.
    • Benjamini, I.1    Kesten, H.2    Peres, Y.3    Schramm, O.4
  • 8
    • 0036011687 scopus 로고    scopus 로고
    • Transience, recurrence and critical behavior for long-range percolation
    • BERGER, N. (2002). Transience, recurrence and critical behavior for long-range percolation. Comm. Math. Phys. 226 531-558.
    • (2002) Comm. Math. Phys. , vol.226 , pp. 531-558
    • Berger, N.1
  • 10
    • 0000393829 scopus 로고
    • Density and uniqueness in percolation
    • BURTON, R. M. and KEANE, M. (1989). Density and uniqueness in percolation. Comm. Math. Phys. 121 501-505.
    • (1989) Comm. Math. Phys. , vol.121 , pp. 501-505
    • Burton, R.M.1    Keane, M.2
  • 11
    • 0000959608 scopus 로고
    • Gaussian fluctuations in the subcritical regime of percolation
    • CAMPANINO, M., CHAYES, J. T. and CHAYES, L. (1991). Gaussian fluctuations in the subcritical regime of percolation. Probab. Theory Related Fields 88 269-341.
    • (1991) Probab. Theory Related Fields , vol.88 , pp. 269-341
    • Campanino, M.1    Chayes, J.T.2    Chayes, L.3
  • 13
    • 0003310674 scopus 로고    scopus 로고
    • Large deviations for three dimensional supercritical percolation
    • CERF, R. (2000). Large deviations for three dimensional supercritical percolation. Astérisque 267 vi+177.
    • (2000) Astérisque , vol.267
    • Cerf, R.1
  • 15
    • 0001295837 scopus 로고
    • Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses
    • GANDOLFI, A., KEANE, M. S. and NEWMAN, C. M. (1992). Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses. Probab. Theory Related Fields 92 511-527.
    • (1992) Probab. Theory Related Fields , vol.92 , pp. 511-527
    • Gandolfi, A.1    Keane, M.S.2    Newman, C.M.3
  • 16
    • 0001626028 scopus 로고
    • The supercritical phase of percolation is well behaved
    • GRIMMETT, G. R. and MARSTRAND, J. M. (1990). The supercritical phase of percolation is well behaved. Proc. Roy. Soc. London Ser. A 430 439-457.
    • (1990) Proc. Roy. Soc. London Ser. A , vol.430 , pp. 439-457
    • Grimmett, G.R.1    Marstrand, J.M.2
  • 17
    • 0034336207 scopus 로고    scopus 로고
    • The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents
    • HARA, T. and SLADE, G. (2000). The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents. J. Statist. Phys. 99 1075-1168.
    • (2000) J. Statist. Phys. , vol.99 , pp. 1075-1168
    • Hara, T.1    Slade, G.2
  • 18
    • 0034345450 scopus 로고    scopus 로고
    • The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion
    • HARA, T. and SLADE, G. (2000). The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion. J. Math. Phys. 41 1244-1293.
    • (2000) J. Math. Phys. , vol.41 , pp. 1244-1293
    • Hara, T.1    Slade, G.2
  • 19
  • 20
    • 8744303260 scopus 로고
    • Coincidence of critical points in percolation problems
    • In Russian
    • MENSHIKOV, M. V. (1986). Coincidence of critical points in percolation problems. Dokl. Akad. Nauk SSSR 288 1308-1311. (In Russian.)
    • (1986) Dokl. Akad. Nauk SSSR , vol.288 , pp. 1308-1311
    • Menshikov, M.V.1
  • 21
    • 0002687371 scopus 로고
    • The small-world problem
    • MILGRAM, S. (1967). The small-world problem. Psychology Today 1 61-67.
    • (1967) Psychology Today , vol.1 , pp. 61-67
    • Milgram, S.1
  • 22
    • 0000314880 scopus 로고
    • s percolation models: The existence of a transition for s ≤ 2
    • s percolation models: The existence of a transition for s ≤ 2. Comm. Math. Phys. 104 547-571.
    • (1986) Comm. Math. Phys. , vol.104 , pp. 547-571
    • Newman, C.M.1    Schulman, L.S.2
  • 23
    • 4243757085 scopus 로고
    • Long-range percolation in one dimension
    • SCHULMAN, L. S. (1983). Long-range percolation in one dimension. J. Phys. A 16 L639-L641.
    • (1983) J. Phys. A , vol.16
    • Schulman, L.S.1
  • 24
    • 0041869040 scopus 로고    scopus 로고
    • Critical percolation in the plane. I. Conformal invariance and Cardy's formula. II. Continuum scaling limit
    • SMIRNOV, S. (2001). Critical percolation in the plane. I. Conformal invariance and Cardy's formula. II. Continuum scaling limit. C. R. Acad. Sci. Paris Sér. I Math. 333 239-244.
    • (2001) C. R. Acad. Sci. Paris Sér. I Math. , vol.333 , pp. 239-244
    • Smirnov, S.1
  • 25
    • 0035527905 scopus 로고    scopus 로고
    • Critical exponents for two-dimensional percolation
    • SMIRNOV, S. and WERNER, W. (2001). Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 729-744.
    • (2001) Math. Res. Lett. , vol.8 , pp. 729-744
    • Smirnov, S.1    Werner, W.2
  • 26
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of "small-world" networks
    • WATTS, D. J. and STROGATZ, S. H. (1998). Collective dynamics of "small-world" networks. Nature 303 440-442.
    • (1998) Nature , vol.303 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.