-
1
-
-
0031222111
-
Limit theorems for the total size of a spatial epidemic
-
ANDERSSON, H. and DJEHICHE, B. (1997). Limit theorems for the total size of a spatial epidemic. J. Appl. Probab. 34 698-710.
-
(1997)
J. Appl. Probab.
, vol.34
, pp. 698-710
-
-
Andersson, H.1
Djehiche, B.2
-
2
-
-
0000380180
-
On central limit theorems in geometrical probability
-
AVRAM, F. and BERTSIMAS, D. (1993). On central limit theorems in geometrical probability. Ann. Appl. Probab. 3 1033-1046.
-
(1993)
Ann. Appl. Probab.
, vol.3
, pp. 1033-1046
-
-
Avram, F.1
Bertsimas, D.2
-
3
-
-
0004344779
-
-
Preprint
-
BORGS, C., CHAYES, J. T., KESTEN, H. and SPENCER, J. (1999). The birth of the infinite cluster: finite-size scaling in percolation. Preprint.
-
(1999)
The Birth of the Infinite Cluster: Finite-size Scaling in Percolation
-
-
Borgs, C.1
Chayes, J.T.2
Kesten, H.3
Spencer, J.4
-
4
-
-
0000791029
-
Limit theorems for the spread of epidemics and forest fires
-
COX, J. T. and DURRETT, R. (1988). Limit theorems for the spread of epidemics and forest fires. Stochastic Processes Appl. 30 171-191.
-
(1988)
Stochastic Processes Appl.
, vol.30
, pp. 171-191
-
-
Cox, J.T.1
Durrett, R.2
-
10
-
-
0001626028
-
The supercritical phase of percolation is well behaved
-
GRIMMETT, G. and MARSTRAND, J. M. (1990). The supercritical phase of percolation is well behaved. Proc. Roy. Soc. London Ser. A 430 439-457.
-
(1990)
Proc. Roy. Soc. London Ser. A
, vol.430
, pp. 439-457
-
-
Grimmett, G.1
Marstrand, J.M.2
-
11
-
-
51249172134
-
Distribution of size, structure and number of vacant regions in a high-intensity mosaic
-
HALL, P. (1985). Distribution of size, structure and number of vacant regions in a high-intensity mosaic. Z. Warsch. Verw. Gebiete 70 237-261.
-
(1985)
Z. Warsch. Verw. Gebiete
, vol.70
, pp. 237-261
-
-
Hall, P.1
-
12
-
-
0007258644
-
Clump counts in a mosaic
-
HALL, P. (1986). Clump counts in a mosaic. Ann. Probab. 14 424-458.
-
(1986)
Ann. Probab.
, vol.14
, pp. 424-458
-
-
Hall, P.1
-
14
-
-
0033141155
-
Central limit theorem for a class of random measures associated with germ-grain models
-
HEINRICH, L. and MOLCHANOV, I. S. (1999). Central limit theorem for a class of random measures associated with germ-grain models. Adv. Appl. Probab. 31 283-314.
-
(1999)
Adv. Appl. Probab.
, vol.31
, pp. 283-314
-
-
Heinrich, L.1
Molchanov, I.S.2
-
15
-
-
84990671427
-
The birth of the giant component
-
JANSON, S. KNUTH, D. E., LUCZAK, T. and PITTEL, B. (1993). The Birth of the Giant Component. Random Structures Algorithms 4 233-358.
-
(1993)
Random Structures Algorithms
, vol.4
, pp. 233-358
-
-
Janson, S.1
Knuth, D.E.2
Luczak, T.3
Pittel, B.4
-
16
-
-
0030501338
-
The central limit theorem for weighted minimal spanning trees on random points
-
KESTEN, H. and LEE, S. (1996). The central limit theorem for weighted minimal spanning trees on random points. Ann. Appl. Probab. 6 495-527.
-
(1996)
Ann. Appl. Probab.
, vol.6
, pp. 495-527
-
-
Kesten, H.1
Lee, S.2
-
17
-
-
0031074947
-
A central limit theorem for critical first passage percolation in two dimensions
-
KESTEN, H. and ZHANG, Y. (1997). A central limit theorem for critical first passage percolation in two dimensions. Probab. Theory Related Fields 107 137-160.
-
(1997)
Probab. Theory Related Fields
, vol.107
, pp. 137-160
-
-
Kesten, H.1
Zhang, Y.2
-
18
-
-
0031260688
-
The central limit theorem for Euclidean minimal spanning trees I
-
LEE, S. (1997) The central limit theorem for Euclidean minimal spanning trees I. Ann. Appl. Probab. 7 996-1020
-
(1997)
Ann. Appl. Probab.
, vol.7
, pp. 996-1020
-
-
Lee, S.1
-
20
-
-
0000618154
-
Symmetric sampling procedures, general epidemic processes and their threshold limit theorems
-
MARTIN-LÖF, A. (1986). Symmetric sampling procedures, general epidemic processes and their threshold limit theorems. J. Appl. Probab. 23 265-282.
-
(1986)
J. Appl. Probab.
, vol.23
, pp. 265-282
-
-
Martin-Löf, A.1
-
22
-
-
0000964674
-
Dependent central limit theorems and invariance principles
-
MCLEISH, D. L. (1974). Dependent central limit theorems and invariance principles. Ann. Probab. 2 620-628.
-
(1974)
Ann. Probab.
, vol.2
, pp. 620-628
-
-
McLeish, D.L.1
-
24
-
-
0032397960
-
Consistent estimation of percolation quantities
-
MEESTER, R. and STEIF, J. (1998). Consistent estimation of percolation quantities. Statist Neerlandica 52 226-238.
-
(1998)
Statist Neerlandica
, vol.52
, pp. 226-238
-
-
Meester, R.1
Steif, J.2
-
26
-
-
0007259921
-
A limit theorem for scaled vacancies of the Boolean model
-
MOLCHANOV, I. (1998). A limit theorem for scaled vacancies of the Boolean model. Stochastics Stochastics Rep. 58 45-65.
-
(1998)
Stochastics Stochastics Rep.
, vol.58
, pp. 45-65
-
-
Molchanov, I.1
-
27
-
-
0035497809
-
Central limit theorems for some graphs in computational geometry
-
PENROSE, M. D. and YUKICH, J. E. (2001) Central limit theorems for some graphs in computational geometry. Ann. Appl Probab. 11 1005-1041.
-
(2001)
Ann. Appl Probab.
, vol.11
, pp. 1005-1041
-
-
Penrose, M.D.1
Yukich, J.E.2
-
28
-
-
0007262590
-
Large deviations for discrete and continuous percolation
-
PENROSE, M. D. and PISZTORA, A. (1996). Large deviations for discrete and continuous percolation. Adv. Appl. Probab. 28 29-52.
-
(1996)
Adv. Appl. Probab.
, vol.28
, pp. 29-52
-
-
Penrose, M.D.1
Pisztora, A.2
-
29
-
-
0042416901
-
Surface order large deviations for ising, potts and percolation models
-
PISZTORA, A. (1996) Surface order large deviations for Ising, Potts and Percolation models. Probab. Theory Related Fields 104 427-466.
-
(1996)
Probab. Theory Related Fields
, vol.104
, pp. 427-466
-
-
Pisztora, A.1
-
30
-
-
0007267908
-
Percolation of poisson sticks on the plane
-
ROY, R. (1991). Percolation of Poisson sticks on the plane. Probab. Theory Related Fields 89 503-517.
-
(1991)
Probab. Theory Related Fields
, vol.89
, pp. 503-517
-
-
Roy, R.1
-
32
-
-
0003444918
-
-
Wiley, Chichester
-
STOYAN, D., KENDALL, W. S. and MECKE, J. (1995). Stochastic Geometry and Its Applications, 2nd ed. Wiley, Chichester.
-
(1995)
Stochastic Geometry and Its Applications, 2nd Ed.
-
-
Stoyan, D.1
Kendall, W.S.2
Mecke, J.3
|