메뉴 건너뛰기




Volumn 207, Issue , 2006, Pages 297-313

Ensembles of Regularized Least Squares Classifiers for high-dimensional problems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34047105102     PISSN: 14349922     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-35488-8_12     Document Type: Article
Times cited : (2)

References (20)
  • 1
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Proc. COLT, pages 144-152, 1992.
    • (1992) Proc. COLT , pp. 144-152
    • Boser, B.1    Guyon, I.2    Vapnik, V.3
  • 2
    • 0012296113 scopus 로고    scopus 로고
    • Algorithmic stability and generalization performance
    • O. Bousquet and A. Elisseeff. Algorithmic stability and generalization performance. In Proc. NIPS, pages 196-202, 2000.
    • (2000) Proc. NIPS , pp. 196-202
    • Bousquet, O.1    Elisseeff, A.2
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(l):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.L , pp. 5-32
    • Breiman, L.1
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the bias-variance problem
    • F. Cucker and S. Smale. Best choices for regularization parameters in learning theory: on the bias-variance problem. Foundations of Computational Mathematics, 2(4):413-428, 2003.
    • (2003) Foundations of Computational Mathematics , vol.2 , Issue.4 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 9
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. In European Conference on Computational Learning Theory, pages 23-37, 1995.
    • (1995) European Conference on Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2
  • 10
    • 0003591748 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Technical report, Dept. of Statistics, Stanford University
    • J.H. Friedman. Greedy function approximation: a gradient boosting machine. Technical report, Dept. of Statistics, Stanford University, 1999a.
    • (1999)
    • Friedman, J.H.1
  • 11
    • 0003743417 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Technical report, Dept. of Statistics, Stanford University
    • J.H. Friedman. Stochastic gradient boosting. Technical report, Dept. of Statistics, Stanford University, 1999b.
    • (1999)
    • Friedman, J.H.1
  • 12
    • 84942484786 scopus 로고
    • Ridge regression; biased estimation for nonorthogonal problems
    • A. Hoerl and R. Kennard. Ridge regression; biased estimation for nonorthogonal problems. Technometrics, 12(3):55-67, 1970.
    • (1970) Technometrics , vol.12 , Issue.3 , pp. 55-67
    • Hoerl, A.1    Kennard, R.2
  • 13
    • 34047101698 scopus 로고    scopus 로고
    • Random forest variable selection
    • I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Springer, New York
    • V. Ng and L. Breiman. Random forest variable selection. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature Extraction, Foundations and Applications. Springer, New York, 2005. This volume.
    • (2005) Feature Extraction, Foundations and Applications , vol.This volume
    • Ng, V.1    Breiman, L.2
  • 15
    • 33750573858 scopus 로고    scopus 로고
    • Bagging regularizes. CBCL Paper 214, Massachusetts Institute of Technology, Cambridge, MA
    • February, AI Memo #2002-003
    • T. Poggio, R. Rifkin, S. Mukherjee, and A. Rakhlin. Bagging regularizes. CBCL Paper 214, Massachusetts Institute of Technology, Cambridge, MA, February 2002. AI Memo #2002-003.
    • (2002)
    • Poggio, T.1    Rifkin, R.2    Mukherjee, S.3    Rakhlin, A.4
  • 19
    • 34047150611 scopus 로고    scopus 로고
    • A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-posed Problems. W.H.Wingston, Washington, D.C., 1977.
    • A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-posed Problems. W.H.Wingston, Washington, D.C., 1977.
  • 20
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • March
    • K. Torkkola. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research, 3:1415-1438, March 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.