-
2
-
-
0001877906
-
-
(b) Bresciani-Pahor, N.; Forcolin, M.; Marzilli, L. G.; Randaccio, L.; Summers, M. F.; Toscano, P. J. Coord. Chem. Rev. 1985, 63, 1-125.
-
(1985)
Coord. Chem. Rev
, vol.63
, pp. 1-125
-
-
Bresciani-Pahor, N.1
Forcolin, M.2
Marzilli, L.G.3
Randaccio, L.4
Summers, M.F.5
Toscano, P.J.6
-
3
-
-
33644501453
-
-
For some recent examples, see: a
-
For some recent examples, see: (a) Gupta, B. D.; Yamuna, R.; Mandai, D. Organometallics 2006, 25, 706-7014.
-
(2006)
Organometallics
, vol.25
, pp. 706-7014
-
-
Gupta, B.D.1
Yamuna, R.2
Mandai, D.3
-
5
-
-
33646415655
-
-
(c) Siega, P.; Randaccio, L.; Marzilli, P. A.; Marzilli, L. G. Inorg. Chem. 2006, 45, 3359-3368.
-
(2006)
Inorg. Chem
, vol.45
, pp. 3359-3368
-
-
Siega, P.1
Randaccio, L.2
Marzilli, P.A.3
Marzilli, L.G.4
-
6
-
-
33644526298
-
-
(d) Pidaparthi, R. R.; Welker, M. E.; Day, C. S. Organometallics 2006, 25, 974-981.
-
(2006)
Organometallics
, vol.25
, pp. 974-981
-
-
Pidaparthi, R.R.1
Welker, M.E.2
Day, C.S.3
-
7
-
-
33645056715
-
-
Fritsch, J. M.; Retka, N. D.; McNeill, K. Inorg. Chem. 2006, 45, 2288-2295.
-
(2006)
Inorg. Chem
, vol.45
, pp. 2288-2295
-
-
Fritsch, J.M.1
Retka, N.D.2
McNeill, K.3
-
8
-
-
26944467132
-
-
(a) Hu, X.; Cossairt, B. M.; Brunschwig, B. S.; Lewis, N. S.; Peters, J. C. Chem. Commun. 2005, 4723-4725.
-
(2005)
Chem. Commun
, pp. 4723-4725
-
-
Hu, X.1
Cossairt, B.M.2
Brunschwig, B.S.3
Lewis, N.S.4
Peters, J.C.5
-
9
-
-
22544466699
-
-
(b) Razavet, M.; Artero, V.; Fontecave, M. Inorg. Chem. 2005, 44, 4786-4795.
-
(2005)
Inorg. Chem
, vol.44
, pp. 4786-4795
-
-
Razavet, M.1
Artero, V.2
Fontecave, M.3
-
11
-
-
0037185048
-
-
(b) McKauley, K. M.; Wilson, S. R.; van der Donk, W. A. Inorg. Chem. 2002, 41, 393-404.
-
(2002)
Inorg. Chem
, vol.41
, pp. 393-404
-
-
McKauley, K.M.1
Wilson, S.R.2
van der Donk, W.A.3
-
13
-
-
21844449665
-
-
Brown, K. L. Chem. Rev. 2005, 105, 2075-2149.
-
(2005)
Chem. Rev
, vol.105
, pp. 2075-2149
-
-
Brown, K.L.1
-
14
-
-
0032146754
-
-
(a) Lesage, S.; Brown, S.; Millar, K. Environ. Sci. Technol. 1998, 32, 2264-2272.
-
(1998)
Environ. Sci. Technol
, vol.32
, pp. 2264-2272
-
-
Lesage, S.1
Brown, S.2
Millar, K.3
-
15
-
-
0031012204
-
-
(b) Glod, G.; Angst, W.; Hollinger, C.; Schwarzenbach, R. P. Environ. Sci. Technol. 1997, 31, 253-260.
-
(1997)
Environ. Sci. Technol
, vol.31
, pp. 253-260
-
-
Glod, G.1
Angst, W.2
Hollinger, C.3
Schwarzenbach, R.P.4
-
16
-
-
0342378075
-
-
(c) Glod, G.; Brodmann, U.; Angst, W.; Hollinger, C.; Schwarzenbach, R. P. Environ. Sci. Technol. 1997, 31, 3154-3160.
-
(1997)
Environ. Sci. Technol
, vol.31
, pp. 3154-3160
-
-
Glod, G.1
Brodmann, U.2
Angst, W.3
Hollinger, C.4
Schwarzenbach, R.P.5
-
17
-
-
24644511598
-
-
Costentin, C.; Robert, M.; Savéant, J.-M. J. Am. Chem. Soc. 2005, 127, 12154-12155.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 12154-12155
-
-
Costentin, C.1
Robert, M.2
Savéant, J.-M.3
-
18
-
-
0029773857
-
-
Burris, D. R.; Delcomyn, C. A.; Smith, M. H.; Roberts, A. L. Environ. Sci. Technol. 1996, 30, 3047-3052.
-
(1996)
Environ. Sci. Technol
, vol.30
, pp. 3047-3052
-
-
Burris, D.R.1
Delcomyn, C.A.2
Smith, M.H.3
Roberts, A.L.4
-
19
-
-
17144404151
-
-
For analogous dechlorination of alkyl halides, see, for example:, and references therein
-
For analogous dechlorination of alkyl halides, see, for example: Argüello, J. E.; Costentin, C.; Griveau, S.; Saveant, J.-M. J. Am. Chem. Soc. 2005, 127, 5049-5055, and references therein.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 5049-5055
-
-
Argüello, J.E.1
Costentin, C.2
Griveau, S.3
Saveant, J.-M.4
-
24
-
-
0037448894
-
-
(a) McKauley, K. M.; Wilson, S. R.; van der Donk, W. A. J. Am. Chem. Soc. 2003, 125, 4410-4411.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 4410-4411
-
-
McKauley, K.M.1
Wilson, S.R.2
van der Donk, W.A.3
-
25
-
-
13644264791
-
-
(b) McKauley, K. M.; Pratt, D. A.; Wilson, S. R.; Shey, J.; Burkey, T. J.; van der Donk, W. A. J. Am. Chem. Soc. 2005, 127, 1126-1136.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 1126-1136
-
-
McKauley, K.M.1
Pratt, D.A.2
Wilson, S.R.3
Shey, J.4
Burkey, T.J.5
van der Donk, W.A.6
-
26
-
-
0037136630
-
-
Nonnenberg, C.; van der Donk, W. A.; Zipse, H. J. Phys. Chem. A 2002, 106, 8708-8715.
-
(2002)
J. Phys. Chem. A
, vol.106
, pp. 8708-8715
-
-
Nonnenberg, C.1
van der Donk, W.A.2
Zipse, H.3
-
32
-
-
10144223417
-
-
(b) Hay, P. J. J. Chem. Phys. 1977, 66, 4377-4384.
-
(1977)
J. Chem. Phys
, vol.66
, pp. 4377-4384
-
-
Hay, P.J.1
-
33
-
-
0347170005
-
-
(a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261.
-
(1972)
J. Chem. Phys
, vol.56
, pp. 2257-2261
-
-
Hehre, W.J.1
Ditchfield, R.2
Pople, J.A.3
-
35
-
-
33947707720
-
-
Generated automatically according to the procedure implemented in Gaussian 03.
-
Generated automatically according to the procedure implemented in Gaussian 03.
-
-
-
-
37
-
-
0001652762
-
-
In particular as far as geometries of transition-metal complexes are concerned, the popular B3LYP functional need not be superior to pure, gradient-corrected variants such as BP86; see for instance: (a) Hamprecht, F. A. H.; Cohen, A. J.; Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 6264-6271.
-
In particular as far as geometries of transition-metal complexes are concerned, the popular B3LYP functional need not be superior to pure, gradient-corrected variants such as BP86; see for instance: (a) Hamprecht, F. A. H.; Cohen, A. J.; Tozer, D. J.; Handy, N. C. J. Chem. Phys. 1998, 109, 6264-6271.
-
-
-
-
38
-
-
0034228773
-
-
(b) Barden, C. J.; Rienstra-Kiracofe, J. C.; Schaefer, H. F. J. Chem. Phys. 2000, 113, 690-700.
-
(2000)
J. Chem. Phys
, vol.113
, pp. 690-700
-
-
Barden, C.J.1
Rienstra-Kiracofe, J.C.2
Schaefer, H.F.3
-
40
-
-
26844534384
-
-
(a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650-654.
-
(1980)
J. Chem. Phys
, vol.72
, pp. 650-654
-
-
Krishnan, R.1
Binkley, J.S.2
Seeger, R.3
Pople, J.A.4
-
41
-
-
84986468715
-
-
(b) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comput. Chem. 1983, 4, 294-301.
-
(1983)
J. Comput. Chem
, vol.4
, pp. 294-301
-
-
Clark, T.1
Chandrasekhar, J.2
Spitznagel, G.W.3
Schleyer, P.V.R.4
-
42
-
-
84962428785
-
-
As implemented in G 03: (a) Barone, V.; Cossi, M.; Tomasi, J. J. Comput. Chem. 1998, 19, 404-417.
-
As implemented in G 03: (a) Barone, V.; Cossi, M.; Tomasi, J. J. Comput. Chem. 1998, 19, 404-417.
-
-
-
-
43
-
-
84961986752
-
-
(b) Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Chem. Phys. 2002, 117, 43-54.
-
(2002)
J. Chem. Phys
, vol.117
, pp. 43-54
-
-
Cossi, M.1
Scalmani, G.2
Rega, N.3
Barone, V.4
-
46
-
-
0345491105
-
-
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
47
-
-
0011083499
-
-
Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
-
(1988)
Chem. Rev
, vol.88
, pp. 899-926
-
-
Reed, A.E.1
Curtiss, L.A.2
Weinhold, F.3
-
48
-
-
0036025403
-
-
For a review on theoretical computations of electron affinities see
-
For a review on theoretical computations of electron affinities see: Rinstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F., III. Chem. Rev. 2002, 102, 231-282.
-
(2002)
Chem. Rev
, vol.102
, pp. 231-282
-
-
Rinstra-Kiracofe, J.C.1
Tschumper, G.S.2
Schaefer III, H.F.3
-
49
-
-
1842783101
-
-
Lewis, A.; Bumpus, J. A.; Truhlar, D. G.; Cramer, C. J. J. Chem. Educ. 2004, 81, 596-604.
-
(2004)
J. Chem. Educ
, vol.81
, pp. 596-604
-
-
Lewis, A.1
Bumpus, J.A.2
Truhlar, D.G.3
Cramer, C.J.4
-
50
-
-
84962425296
-
-
Winget, P.; Cramer, C. J.; Truhlar, D. G. Theor. Chem. Acc. 2004, 112, 217-227.
-
(2004)
Theor. Chem. Acc
, vol.112
, pp. 217-227
-
-
Winget, P.1
Cramer, C.J.2
Truhlar, D.G.3
-
51
-
-
0038626673
-
-
Gaussian, Inc, Pittsburgh, PA
-
Frisch, M. J.; et al. Gaussian 03; Gaussian, Inc.: Pittsburgh, PA, 2003.
-
(2003)
Gaussian 03
-
-
Frisch, M.J.1
-
52
-
-
0001277416
-
-
Bresciani-Pahor, N.; Randaccio, L.; Zangrando, E.; Toscano, P. J. Inorg. Chim. Acta 1985, 96, 193-198.
-
(1985)
Inorg. Chim. Acta
, vol.96
, pp. 193-198
-
-
Bresciani-Pahor, N.1
Randaccio, L.2
Zangrando, E.3
Toscano, P.J.4
-
53
-
-
0039454791
-
-
Patthabi, V.; Nethaji, M.; Gabe, E. J.; Lee, F. L.; Le, Page, Y. Acta Crystallogr. Sect. C 1984, 40, 1155.
-
(1984)
Acta Crystallogr. Sect. C
, vol.40
, pp. 1155
-
-
Patthabi, V.1
Nethaji, M.2
Gabe, E.J.3
Lee, F.L.4
-
54
-
-
33845378160
-
-
Rossi, M.: Glusker, J. P.; Randaccio, L.; Summers, M. F.; Toscano, P. J.: Marzilli, L. G. J. Am. Chem. Soc. 1985, 107, 1729-1738.
-
(1985)
J. Am. Chem. Soc
, vol.107
, pp. 1729-1738
-
-
Rossi, M.1
Glusker, J.P.2
Randaccio, L.3
Summers, M.F.4
Toscano, P.J.5
Marzilli, L.G.6
-
55
-
-
33746912315
-
-
There is also recent evidence from CASSCF calculations that DFT overestimates the Co-C BDE in methylcobalamin models: (a) Spataru, T, Birke, R. L. J. Phys. Chem. A 2006, 110, 8599-8604. On the other hand, the BP86 functional has recently been shown to perform quite well in that respect
-
There is also recent evidence from CASSCF calculations that DFT overestimates the Co-C BDE in methylcobalamin models: (a) Spataru, T.; Birke, R. L. J. Phys. Chem. A 2006, 110, 8599-8604. On the other hand, the BP86 functional has recently been shown to perform quite well in that respect:
-
-
-
-
56
-
-
33747197724
-
-
(b) Kuta, J.; Patchkovskii, S.; Zgierski, M. Z.; Kozlowski, P. J. Comput. Chem. 2006, 27, 1429-1437.
-
(2006)
J. Comput. Chem
, vol.27
, pp. 1429-1437
-
-
Kuta, J.1
Patchkovskii, S.2
Zgierski, M.Z.3
Kozlowski, P.4
-
58
-
-
33244469516
-
-
Birke, R. L.; Huang, Q.; Spataru, T.; Gosser, T. K., Jr. J. Am. Chem. Soc. 2006, 128, 1922-1936. The entropic contribution inferred in that study, TDS = 13.6 ± 1.5 kcal/mol at 293 K, compares favorably to that computed for the process in eq 1, 14.0 kcal/mol (in contrast, much smaller entropic effects have been found in ref 38, TDS = 7 ± 2 kcal/mol at 293 K).
-
Birke, R. L.; Huang, Q.; Spataru, T.; Gosser, T. K., Jr. J. Am. Chem. Soc. 2006, 128, 1922-1936. The entropic contribution inferred in that study, TDS = 13.6 ± 1.5 kcal/mol at 293 K, compares favorably to that computed for the process in eq 1, 14.0 kcal/mol (in contrast, much smaller entropic effects have been found in ref 38, TDS = 7 ± 2 kcal/mol at 293 K).
-
-
-
-
59
-
-
0034709867
-
-
See for example: a
-
See for example: (a) Randaccio, L.; Furlan, M.; Geremia, S.; Šlouf, M.; Srnova, I.; Toffoli, D. Inorg. Chem. 2000, 39, 3403-3413.
-
(2000)
Inorg. Chem
, vol.39
, pp. 3403-3413
-
-
Randaccio, L.1
Furlan, M.2
Geremia, S.3
Šlouf, M.4
Srnova, I.5
Toffoli, D.6
-
60
-
-
33646936039
-
-
(b) Randaccio, L.; Geremia, S.; Nardin, G.; Wuerges, J. Coord. Chem. Rev. 2006, 250, 1332-1350.
-
(2006)
Coord. Chem. Rev
, vol.250
, pp. 1332-1350
-
-
Randaccio, L.1
Geremia, S.2
Nardin, G.3
Wuerges, J.4
-
61
-
-
0037120840
-
-
-0.63 V for Ti(III) chloride at pH 8; -0.70 V for the complex with ascorbate, cf. ref 7. (b) For Ti(III) citrate, an upper limit of -0.80 V has been estimated, cf. ref 17 in: Guo, M; Sulc, F.; Ribbe, M. W.; Farmer, P. J.; Burgess, B. K. J. Am. Chem. Soc. 2002, 124, 12100-12101.
-
(a) -0.63 V for Ti(III) chloride at pH 8; -0.70 V for the complex with ascorbate, cf. ref 7. (b) For Ti(III) citrate, an upper limit of -0.80 V has been estimated, cf. ref 17 in: Guo, M; Sulc, F.; Ribbe, M. W.; Farmer, P. J.; Burgess, B. K. J. Am. Chem. Soc. 2002, 124, 12100-12101.
-
-
-
-
63
-
-
9744248685
-
-
See for example:, and references therein
-
See for example: Crudden, C. M.; Allen, D. P. Coord. Chem. Rev. 2004, 248, 2247-2273, and references therein.
-
(2004)
Coord. Chem. Rev
, vol.248
, pp. 2247-2273
-
-
Crudden, C.M.1
Allen, D.P.2
-
64
-
-
33947675668
-
-
That it is a chloride anion that is leaving, rather than a Cl radical, is apparent from population analyses, according to which the leaving Cl bears a charge of ca. -0.4e (both from Mulliken and natural population analysis).
-
That it is a chloride anion that is leaving, rather than a Cl radical, is apparent from population analyses, according to which the leaving Cl bears a charge of ca. -0.4e (both from Mulliken and natural population analysis).
-
-
-
-
65
-
-
33947655741
-
-
An attempted optimization of a corresponding [MeCo(Hgly)2(= CCl-CCl3, complex (which would be an isomer of 4, ) by replacing the H atom in 6a, with Cl resulted in chloride dissociation from the CCl3 group, affording 5
-
3 group, affording 5.
-
-
-
-
66
-
-
14544283254
-
-
.- could be regarded as a Co(IV) species, a quite unusual oxidation state. For a recent paper on oxidized cobaloximes containing Co(IV) see: Ohkubo, K.; Fukuzumi, S. J. Phys. Chem. A 2005, 109, 1105-1113.
-
.- could be regarded as a Co(IV) species, a quite unusual oxidation state. For a recent paper on oxidized cobaloximes containing Co(IV) see: Ohkubo, K.; Fukuzumi, S. J. Phys. Chem. A 2005, 109, 1105-1113.
-
-
-
-
67
-
-
33947671748
-
-
Energy converged to 10-6 au and opt, loose keyword
-
-6 au and opt = loose keyword.
-
-
-
-
68
-
-
33947704008
-
-
The corresponding four-coordinate cob(I)alamin has been termed supernucleophile, cf. ref 14.
-
The corresponding four-coordinate cob(I)alamin has been termed supernucleophile, cf. ref 14.
-
-
-
-
69
-
-
37049110557
-
-
4)]: Klein, H.-F.; Witty, H.; Schubert, U. Chem. Commun. 1983, 231-232.
-
4)]: Klein, H.-F.; Witty, H.; Schubert, U. Chem. Commun. 1983, 231-232.
-
-
-
-
71
-
-
84962463451
-
-
Li, J., Fisher, C. L.; Chen, J. L.; Bashford, D.; Noodleman, L. Inorg. Chem. 1996, 35, 4694-4702.
-
(1996)
Inorg. Chem
, vol.35
, pp. 4694-4702
-
-
Li, J.1
Fisher, C.L.2
Chen, J.L.3
Bashford, D.4
Noodleman, L.5
-
72
-
-
33751157883
-
-
ΔE(gas) = -13.5 kcal/mol, similar to values for the gas-phase electron affinity that have been obtained in experiments and DFT and ab initio calculations: (a) Chen, E. C. M.; Wiley, J. R.; Batten, C. F.; Wentworth, W. E. J. Phys. Chem. 1994, 98, 88-94.
-
ΔE(gas) = -13.5 kcal/mol, similar to values for the gas-phase electron affinity that have been obtained in experiments and DFT and ab initio calculations: (a) Chen, E. C. M.; Wiley, J. R.; Batten, C. F.; Wentworth, W. E. J. Phys. Chem. 1994, 98, 88-94.
-
-
-
-
73
-
-
22344446593
-
-
(b) Bylaska, E. J.; Dupuis, M.; Tratnyek, P. G. J. Phys. Chem. A 2005, 109, 5905-5916.
-
(2005)
J. Phys. Chem. A
, vol.109
, pp. 5905-5916
-
-
Bylaska, E.J.1
Dupuis, M.2
Tratnyek, P.G.3
-
74
-
-
33947630104
-
-
A somewhat more negative value, -1.98 V, has been derived empirically in ref 8.
-
A somewhat more negative value, -1.98 V, has been derived empirically in ref 8.
-
-
-
-
75
-
-
0034224220
-
-
For the computation of such barriers in electron-transfer processes see for example: a
-
For the computation of such barriers in electron-transfer processes see for example: (a) Rosso, K. M.; Rustad, J. R. J. Phys. Chem. A 2000, 104, 6718-6725.
-
(2000)
J. Phys. Chem. A
, vol.104
, pp. 6718-6725
-
-
Rosso, K.M.1
Rustad, J.R.2
-
77
-
-
22344446593
-
-
-) were found (also at restricted-open-shell DFT levels, cf.: Bylaska, E. J.; Dupuis, M.; Tratnyek, P. G. J. Phys. Chem. A 2005, 109, 5905-5916). For these σ* states, the computed reduction potentials of TCE, cis-DCE, and VC are -1.36, -1.67, and -1.83 V, respectively. In all cases, outer-sphere reduction of these olefins would appear less favorable than the inner-sphere mechanisms (cf. ΔG values in Table 3).
-
-) were found (also at restricted-open-shell DFT levels, cf.: Bylaska, E. J.; Dupuis, M.; Tratnyek, P. G. J. Phys. Chem. A 2005, 109, 5905-5916). For these σ* states, the computed reduction potentials of TCE, cis-DCE, and VC are -1.36, -1.67, and -1.83 V, respectively. In all cases, outer-sphere reduction of these olefins would appear less favorable than the inner-sphere mechanisms (cf. ΔG values in Table 3).
-
-
-
|