메뉴 건너뛰기




Volumn 4, Issue 1, 2005, Pages 81-96

A sequence-element-based hierarchical clustering algorithm for categorical sequence data

Author keywords

Data mining; Hierarchical clustering; Sequences; Similarity measure

Indexed keywords


EID: 33746227383     PISSN: 02196220     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219622005001398     Document Type: Article
Times cited : (8)

References (29)
  • 9
    • 0035279319 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • S. Guha, R.. Rastogi and K. Shim, CURE: An efficient clustering algorithm for large databases, Information Syst. 26(1) (2001) 35-58.
    • (2001) Information Syst. , vol.26 , Issue.1 , pp. 35-58
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 10
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: A robust clustering algorithm for categorical attributes
    • S. Guha, R,. Rastogi and K. Shim, ROCK: A robust clustering algorithm for categorical attributes, Information Syst. 25(5) (2000) 345-366.
    • (2000) Information Syst. , vol.25 , Issue.5 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 13
    • 0010415411 scopus 로고    scopus 로고
    • Spatial clustering methods in data mining: A survey
    • eds. H. J. Miller and J. Han (Taylor and Francis, New York)
    • J. Han, M. Kamber and A. K. H. Tung, Spatial clustering methods in data mining: A survey, in Geographic Data Mining and Knowledge Discovery, eds. H. J. Miller and J. Han (Taylor and Francis, New York, 2001).
    • (2001) Geographic Data Mining and Knowledge Discovery
    • Han, J.1    Kamber, M.2    Tung, A.K.H.3
  • 17
    • 8444235793 scopus 로고    scopus 로고
    • Universal formulation of sequential patterns
    • University of Minnesota, Department of Computer Science
    • M. Joshi, G. Karypis and V. Kumar, Universal formulation of sequential patterns, Technical Report TR, 99-021, University of Minnesota, Department of Computer Science (1999).
    • (1999) Technical Report , vol.TR 99-021
    • Joshi, M.1    Karypis, G.2    Kumar, V.3
  • 19
    • 0001781295 scopus 로고    scopus 로고
    • Web mining research: A survey
    • R,. Kosals and H. Blockeel, Web mining research: A survey, ACM SIGKDD 2(1) (2000) 1-15.
    • (2000) ACM SIGKDD , vol.2 , Issue.1 , pp. 1-15
    • Kosals, R.1    Blockeel, H.2
  • 23
    • 0003136237 scopus 로고
    • Efficient and effective clustering method for spatial data mining
    • R. T. Ng and J. Han, Efficient and effective clustering method for spatial data mining, in Proc. 20th VLDB Conf. (1994), pp. 144-155.
    • (1994) Proc. 20th VLDB Conf. , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 24
    • 34250725830 scopus 로고    scopus 로고
    • Towards adaptive web sites: Conceptual framework and case study
    • Canada
    • M. Perkowitz and O. Etzioni, Towards adaptive web sites: Conceptual framework and case study, in Proc. 8th Int. WWW Conf., 1999, Canada.
    • (1999) Proc. 8th Int. WWW Conf.
    • Perkowitz, M.1    Etzioni, O.2
  • 25
    • 0037375280 scopus 로고    scopus 로고
    • Automatic discovery of similarity relationships through web mining
    • D. Roussinov and J. L. Zhao, Automatic discovery of similarity relationships through web mining, Decision Support Syst. 35(1) (2003).
    • (2003) Decision Support Syst. , vol.35 , Issue.1
    • Roussinov, D.1    Zhao, J.L.2
  • 28
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • Canada
    • T. Zhang, R. Ramakrishnan and M. Livny, BIRCH: An efficient data clustering method for very large databases, ACM SIGMOD, Canada (1996) 103-114.
    • (1996) ACM SIGMOD , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 29
    • 33746208320 scopus 로고    scopus 로고
    • Comparison of agglomerative and partitional document clustering algorithms
    • Arlington, VA
    • Y. Zho and G. Karypis, Comparison of agglomerative and partitional document clustering algorithms, 2nd SIAM Int. Conf. Data Mining, 2002, Arlington, VA.
    • (2002) 2nd SIAM Int. Conf. Data Mining
    • Zho, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.