-
1
-
-
0001292433
-
-
M. S. Torikachvili, J. W. Chen, Y. Dalichaouch, R. P. Guertin, M. W. McElfresh, C. Rossel, M. B. Maple, and G. P. Meisner: Phys. Rev. B 36 (1987) 8660.
-
(1987)
Phys. Rev. B
, vol.36
, pp. 8660
-
-
Torikachvili, M.S.1
Chen, J.W.2
Dalichaouch, Y.3
Guertin, R.P.4
McElfresh, M.W.5
Rossel, C.6
Maple, M.B.7
Meisner, G.P.8
-
3
-
-
0034452772
-
-
H. Sato, Y. Abe, H. Okada, T. D. Matsuda, K. Abe, H. Sugawara, and Y. Aoki: Phys. Rev. B 62 (2000) 15125.
-
(2000)
Phys. Rev. B
, vol.62
, pp. 15125
-
-
Sato, H.1
Abe, Y.2
Okada, H.3
Matsuda, T.D.4
Abe, K.5
Sugawara, H.6
Aoki, Y.7
-
4
-
-
0036501052
-
-
E. D. Bauer, N. A. Frederick, P.-C. Ho, V. S. Zapf, and M. B. Maple: Phys. Rev. B 65 (2002) 100506.
-
(2002)
Phys. Rev. B
, vol.65
, pp. 100506
-
-
Bauer, E.D.1
Frederick, N.A.2
Ho, P.-C.3
Zapf, V.S.4
Maple, M.B.5
-
5
-
-
4243479509
-
-
L. Keller, P. Fischer, T. Herrmannsdörfer, A. Dönni, H. Sugawara, T. D. Matsuda, K. Abe, Y. Aoki, and H. Sato: J. Alloys Compd. 323-324 (2001) 516.
-
(2001)
J. Alloys Compd
, vol.323-324
, pp. 516
-
-
Keller, L.1
Fischer, P.2
Herrmannsdörfer, T.3
Dönni, A.4
Sugawara, H.5
Matsuda, T.D.6
Abe, K.7
Aoki, Y.8
Sato, H.9
-
6
-
-
2042458759
-
-
Y. Aoki, T. Namiki, T. D. Matsuda, K. Abe, H. Sugawara, and H. Sato: Phys. Rev. B 65 (2002) 064446.
-
(2002)
Phys. Rev. B
, vol.65
, pp. 064446
-
-
Aoki, Y.1
Namiki, T.2
Matsuda, T.D.3
Abe, K.4
Sugawara, H.5
Sato, H.6
-
7
-
-
0036602761
-
-
Y. Aoki, T. Namiki, T. D. Matsuda, H. Sugawara, and H. Sato: J. Phys. Chem. Solids 63 (2002) 1201.
-
(2002)
J. Phys. Chem. Solids
, vol.63
, pp. 1201
-
-
Aoki, Y.1
Namiki, T.2
Matsuda, T.D.3
Sugawara, H.4
Sato, H.5
-
8
-
-
33847403663
-
-
H. Sugawara, T. D. Matsuda, K. Abe, Y. Aoki, H. Sato, S. Nojiri, Y. Inada, R. Settai, and Y. Onuki: Phys. Rev. B 66 (2002) 134422.
-
(2002)
Phys. Rev. B
, vol.66
, pp. 134422
-
-
Sugawara, H.1
Matsuda, T.D.2
Abe, K.3
Aoki, Y.4
Sato, H.5
Nojiri, S.6
Inada, Y.7
Settai, R.8
Onuki, Y.9
-
9
-
-
0034903597
-
-
Y. Nakanishi, T. Simizu, M. Yoshizawa, T. D. Matsuda, H. Sugawara, and H. Sato: Phys. Rev. B 63 (2001) 184429.
-
(2001)
Phys. Rev. B
, vol.63
, pp. 184429
-
-
Nakanishi, Y.1
Simizu, T.2
Yoshizawa, M.3
Matsuda, T.D.4
Sugawara, H.5
Sato, H.6
-
10
-
-
0036503858
-
-
K. Iwasa, Y. Watanabe, K. Kuwahara, M. Kohgi, H. Sugawara, T. D. Matsuda, Y. Aoki, and H. Sato: Physica B 312-313 (2002) 834.
-
(2002)
Physica B
, vol.312-313
, pp. 834
-
-
Iwasa, K.1
Watanabe, Y.2
Kuwahara, K.3
Kohgi, M.4
Sugawara, H.5
Matsuda, T.D.6
Aoki, Y.7
Sato, H.8
-
11
-
-
18244390410
-
-
K. Ishii, T. Inami, Y. Murakami, L. Hao, K. Iwasa, M. Kohgi, Y. Aoki, H. Sugawara, H. Sato, S. Imada, H. Nakao, H. Sawa, and Y. Wakabayashi: Physica B 329-333 (2003) 467.
-
(2003)
Physica B
, vol.329-333
, pp. 467
-
-
Ishii, K.1
Inami, T.2
Murakami, Y.3
Hao, L.4
Iwasa, K.5
Kohgi, M.6
Aoki, Y.7
Sugawara, H.8
Sato, H.9
Imada, S.10
Nakao, H.11
Sawa, H.12
Wakabayashi, Y.13
-
12
-
-
18244403940
-
-
L. Hao, K. Iwasa, M. Nakajima, D. Kawana, K. Kuwahara, M. Koghi, H. Sugawara, T. D. Matsuda, Y. Aoki, and H. Sato: Acta Phys. Pol. B 34 (2003) 1113.
-
(2003)
Acta Phys. Pol. B
, vol.34
, pp. 1113
-
-
Hao, L.1
Iwasa, K.2
Nakajima, M.3
Kawana, D.4
Kuwahara, K.5
Koghi, M.6
Sugawara, H.7
Matsuda, T.D.8
Aoki, Y.9
Sato, H.10
-
13
-
-
18144392255
-
-
L. Hao, K. Iwasa, K. Kuwahara, M. Kohgi, H. Sugawara, Y. Aoki, H. Sato, T. D. Matsuda, J.-M. Mignot, A. Gukasov, and M. Nishi: Physica B 359-361 (2005) 871.
-
(2005)
Physica B
, vol.359-361
, pp. 871
-
-
Hao, L.1
Iwasa, K.2
Kuwahara, K.3
Kohgi, M.4
Sugawara, H.5
Aoki, Y.6
Sato, H.7
Matsuda, T.D.8
Mignot, J.-M.9
Gukasov, A.10
Nishi, M.11
-
17
-
-
33847371769
-
-
A part of the present work was presented in Joint Workshop on NQP-Skutterudites and NPM in Multi-approach Nov. 21-24, 2005, Tokyo Metropolitan University, Program and Abstracts, p. 86
-
A part of the present work was presented in Joint Workshop on NQP-Skutterudites and NPM in Multi-approach (Nov. 21-24, 2005, Tokyo Metropolitan University), Program and Abstracts, p. 86.
-
-
-
-
18
-
-
33847369988
-
-
to be published in, Aug. 28-30, Tokai, Japan, J. Phys. Chem. Solids
-
O. Sakai, R. Shiina, and H. Shiba: to be published in Proc. QuBS2006; Advances in Neutron, Synchrotron Radiation, muSR and NMR Researches (Aug. 28-30, 2006, Tokai, Japan), J. Phys. Chem. Solids.
-
(2006)
Proc. QuBS2006; Advances in Neutron, Synchrotron Radiation, muSR and NMR Researches
-
-
Sakai, O.1
Shiina, R.2
Shiba, H.3
-
19
-
-
27144450206
-
-
H. Tou, M. Doi, M. Sera, M. Yogi, H. Shiina, and H. Sato: J. Phys. Soc. Jpn. 74 (2005) 2695.
-
(2005)
J. Phys. Soc. Jpn
, vol.74
, pp. 2695
-
-
Tou, H.1
Doi, M.2
Sera, M.3
Yogi, M.4
Shiina, H.5
Sato, H.6
-
20
-
-
33847349004
-
-
When we classify multipoles in the spherical symmetry case, the cubic-invariant hexadecapole and the monopole have different character. If we consider the single site effects, the former operator causes the cubic crystalline field splitting of the electronic state, while the latter does not cause. Therefore they may be different in some sense even in cubic systems. We note that the monopole ordering also can induce the cubic crystalline field splitting in principle through the intersite interaction, for example, the simplest one is the electrostatic crystalline field effect of the monopole ordering. As explained in the main text, however, terms with higher harmonics of the direction cosine are necessary to reproduce the field-direction dependence of the NMR splitting. This may suggest the importance of the hexadecapole component in the ordering of this compounds
-
When we classify multipoles in the spherical symmetry case, the cubic-invariant hexadecapole and the monopole have different character. If we consider the single site effects, the former operator causes the cubic crystalline field splitting of the electronic state, while the latter does not cause. Therefore they may be different in some sense even in cubic systems. We note that the "monopole ordering" also can induce the cubic crystalline field splitting in principle through the intersite interaction, for example, the simplest one is the electrostatic crystalline field effect of the monopole ordering. As explained in the main text, however, terms with higher harmonics of the direction cosine are necessary to reproduce the field-direction dependence of the NMR splitting. This may suggest the importance of the hexadecapole component in the ordering of this compounds.
-
-
-
-
22
-
-
33847375252
-
-
in preparation
-
J. Kikuchi et al.: in preparation.
-
-
-
Kikuchi, J.1
-
26
-
-
33847339874
-
-
We use the popular notation in Oh group in this paper, though the point group around Pr is Th as noted in ref. 25. In fact the Th symmetry is important to solve many puzzling problems. The Tα(Γ4) and T β(Γ5) moments have the same character in the Th group. The Th symmetry is reflected in the invariant coupling form 1
-
h symmetry is reflected in the invariant coupling form (1).
-
-
-
-
27
-
-
33847404131
-
-
The change of the hyperfine field due to the change of the crystalline field state caused by perturbations preserving the local Th symmetry is responsible for this effect. For example, the change of the electronic state due to the cubic-local lattice distortion of Fe and P sites around Pr sites, and the electro-static field of the charge ordering of ions with Q will contribute
-
h symmetry is responsible for this effect. For example, the change of the electronic state due to the cubic-local lattice distortion of Fe and P sites around Pr sites, and the electro-static field of the charge ordering of ions with Q will contribute.
-
-
-
-
31
-
-
31244434111
-
-
E. Kuramochi, H. Sugawara, T. D. Matsuda, Y. Abe, K. Abe, Y. Aoki, and H. Sato: Acta Phys. Pol. B 34 (2003) 1129.
-
(2003)
Acta Phys. Pol. B
, vol.34
, pp. 1129
-
-
Kuramochi, E.1
Sugawara, H.2
Matsuda, T.D.3
Abe, Y.4
Abe, K.5
Aoki, Y.6
Sato, H.7
-
32
-
-
18244399000
-
-
T. Tayama, J. Custers, H. Sato, T. Sakakibara, and H. Sato: J. Phys. Soc. Jpn. 73 (2004) 3258.
-
(2004)
J. Phys. Soc. Jpn
, vol.73
, pp. 3258
-
-
Tayama, T.1
Custers, J.2
Sato, H.3
Sakakibara, T.4
Sato, H.5
-
33
-
-
33847379515
-
-
Honestly speaking, the data at H ∥ [111] has been used to determine parameters in the row I of the Table I.
-
Honestly speaking, the data at H ∥ [111] has been used to determine parameters in the row I of the Table I.
-
-
-
-
34
-
-
33847410692
-
-
1,4 is chosen.
-
1,4 is chosen.
-
-
-
-
35
-
-
33847377231
-
-
In the strict sense, the AFQ and the AF-monopole states under the magnetic field will not be separated except the case of H ∥ [111
-
In the strict sense, the AFQ and the AF-monopole states under the magnetic field will not be separated except the case of H ∥ [111].
-
-
-
|