메뉴 건너뛰기




Volumn 70, Issue 7-9, 2007, Pages 1360-1371

A novel approach for estimation of optimal embedding parameters of nonlinear time series by structural learning of neural network

Author keywords

Chaos; Embedding parameters; Embedding theorem; Neural network; Nonlinear time series; Strange attractor; Structural learning

Indexed keywords

CHAOS THEORY; COMPUTER SIMULATION; LEARNING SYSTEMS; NONLINEAR SYSTEMS; TIME SERIES ANALYSIS;

EID: 33847395391     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.06.005     Document Type: Article
Times cited : (25)

References (41)
  • 2
    • 35949011725 scopus 로고
    • Singular-value decomposition and the Grassberger-Procaccia algorithm
    • Albano A.M., Muench J., Schwartz C., Mees A.I., and Rapp P.E. Singular-value decomposition and the Grassberger-Procaccia algorithm. Phys. Rev. A 38 (1988) 3017-3026
    • (1988) Phys. Rev. A , vol.38 , pp. 3017-3026
    • Albano, A.M.1    Muench, J.2    Schwartz, C.3    Mees, A.I.4    Rapp, P.E.5
  • 4
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19 (1974) 716-723
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 5
    • 42749100939 scopus 로고    scopus 로고
    • Comparative study of embedding methods
    • 066210-1-13
    • Cellucci C.J., Albano A.M., and Rapp P.E. Comparative study of embedding methods. Phys. Rev. E 67 (2003) 066210-1-13
    • (2003) Phys. Rev. E , vol.67
    • Cellucci, C.J.1    Albano, A.M.2    Rapp, P.E.3
  • 6
    • 35048858405 scopus 로고    scopus 로고
    • B. Chakraborty, Y. Manabe, Structural Learning of Neural Network for Continuous Valued Output: Effect of Penalty Term to Hidden Units, Lecture Notes in Computer Science, vol. 3316, Springer, Berlin, 2004, pp. 599-605.
  • 7
    • 0026221027 scopus 로고
    • An information criterion for optimal neural network selection
    • Fogel D.B. An information criterion for optimal neural network selection. IEEE Trans. Neural Networks 2 (1991) 490-497
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 490-497
    • Fogel, D.B.1
  • 8
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Fraser A.M., and Swinney H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33 (1986) 1134-1140
    • (1986) Phys. Rev. A , vol.33 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 9
    • 0000810560 scopus 로고    scopus 로고
    • R. Hegger, H. Kantz, T. Schreiber, Practical implementation of nonlinear time series methods: the TISEAN package, CHAOS 9, 1999, pp. 413-435.
  • 10
    • 0030130724 scopus 로고    scopus 로고
    • Structural learning with forgetting
    • Ishikawa M. Structural learning with forgetting. Neural Networks 9 3 (1996) 509-521
    • (1996) Neural Networks , vol.9 , Issue.3 , pp. 509-521
    • Ishikawa, M.1
  • 11
    • 0000497870 scopus 로고    scopus 로고
    • Embedding as a modelling problem
    • Judd K., and Mees A. Embedding as a modelling problem. Physica D 120 (1998) 273-286
    • (1998) Physica D , vol.120 , pp. 273-286
    • Judd, K.1    Mees, A.2
  • 12
    • 0006031581 scopus 로고    scopus 로고
    • Achieving good nonlinear models: keep it simple, vary the embedding, and get the dynamics right
    • Mees A.I. (Ed), Birkhauser, Boston
    • Judd K., Small M., and Mees A.I. Achieving good nonlinear models: keep it simple, vary the embedding, and get the dynamics right. In: Mees A.I. (Ed). Nonlinear Dynamics and Statistics (2001), Birkhauser, Boston 65-80
    • (2001) Nonlinear Dynamics and Statistics , pp. 65-80
    • Judd, K.1    Small, M.2    Mees, A.I.3
  • 13
    • 0029254124 scopus 로고
    • Improving generalization performance by information minimization
    • Kamimura R., Takagi T., and Nakanishi S. Improving generalization performance by information minimization. IEICE Trans. Inform. Syst. E78-D 2 (1995) 163-173
    • (1995) IEICE Trans. Inform. Syst. , vol.E78-D , Issue.2 , pp. 163-173
    • Kamimura, R.1    Takagi, T.2    Nakanishi, S.3
  • 15
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • Kennel M.B. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45 (1992) 3403-3411
    • (1992) Phys. Rev. A , vol.45 , pp. 3403-3411
    • Kennel, M.B.1
  • 16
    • 0038528482 scopus 로고    scopus 로고
    • Recurrent neural network with short-term memory and fast structural learning method
    • Kikuchi S., and Nakanishi M. Recurrent neural network with short-term memory and fast structural learning method. Syst. Comput. Japan 34 6 (2003) 69-79
    • (2003) Syst. Comput. Japan , vol.34 , Issue.6 , pp. 69-79
    • Kikuchi, S.1    Nakanishi, M.2
  • 17
    • 0007287463 scopus 로고    scopus 로고
    • Delay time window and plateau onset of the correlation for small data sets
    • Kim S., Eykholt R., and Salas J.D. Delay time window and plateau onset of the correlation for small data sets. Phys. Rev. E 58 (1998) 5676-5682
    • (1998) Phys. Rev. E , vol.58 , pp. 5676-5682
    • Kim, S.1    Eykholt, R.2    Salas, J.D.3
  • 18
    • 33847353615 scopus 로고    scopus 로고
    • R. Lapedes, R. Farber, Nonlinear signal processing using neural networks: prediction and system modelling, Los Alamos Nat. lab., Los Alamos, NM, Technical Report, LA-UR87-2662, 1987.
  • 19
    • 0030115092 scopus 로고    scopus 로고
    • Predictive minimum description length criterion for the time series modelling with neural networks
    • Lehtokangas M., et al. Predictive minimum description length criterion for the time series modelling with neural networks. Neural Comput. 8 (1996) 583-593
    • (1996) Neural Comput. , vol.8 , pp. 583-593
    • Lehtokangas, M.1
  • 20
    • 0035441349 scopus 로고    scopus 로고
    • Prediction of noisy chaotic time series using an optimal radial basis function neural network
    • Leung H., Lo T., and Wang S. Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans. Neural Networks 12 5 (2001) 1163-1172
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.5 , pp. 1163-1172
    • Leung, H.1    Lo, T.2    Wang, S.3
  • 21
    • 0026904282 scopus 로고
    • Parameter estimation of finite mixtures using the EM algorithm and information criteria with application to medical image processing
    • Liang Z., Jasaczak R.J., and Coleman R.E. Parameter estimation of finite mixtures using the EM algorithm and information criteria with application to medical image processing. IEEE Trans. Nucl. Sci. 39 4 (1992) 1126-1133
    • (1992) IEEE Trans. Nucl. Sci. , vol.39 , Issue.4 , pp. 1126-1133
    • Liang, Z.1    Jasaczak, R.J.2    Coleman, R.E.3
  • 22
    • 33847353155 scopus 로고    scopus 로고
    • D.J.C. MacKay, Bayesian methods for adaptive models, Ph.D. Dissertation, Calif. Inst. Tech., Pasadena, 1991.
  • 23
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D.J.C. Bayesian interpolation. Neural Comput. 4 (1992) 415-447
    • (1992) Neural Comput. , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 24
    • 0028698662 scopus 로고
    • Bayesian non-linear modeling for the energy prediction competition
    • MacKay D.J.C. Bayesian non-linear modeling for the energy prediction competition. ASHRAE Trans. 100 Part 2 (1994) 1053-1062
    • (1994) ASHRAE Trans. , vol.100 , Issue.PART 2 , pp. 1053-1062
    • MacKay, D.J.C.1
  • 25
    • 33847376892 scopus 로고    scopus 로고
    • Y. Manabe, B. Chakraborty, Estimating embedding parameters using structural learning of neural network, IEEE International Workshop on NSIP 2005, Sapporo, Japan, May, 2005.
  • 26
    • 11144302678 scopus 로고    scopus 로고
    • Y. Manabe, B. Chakraborty, H. Fujita, Structural learning of multilayer feed forward neural networks for continuous valued functions, in: Proceedings of IEEE-MWSCAS 2004, July, 2004, pp. III77-III80.
  • 28
    • 0035447455 scopus 로고    scopus 로고
    • Reconstructions and predictions of nonlinear dynamical systems: a hierarchical Bayesian approach
    • Matsumoto T., Nakajima Y., Saito M., Sugi J., and Hamagishi H. Reconstructions and predictions of nonlinear dynamical systems: a hierarchical Bayesian approach. IEEE Trans. Signal Process. 49 9 (2001) 2138-2155
    • (2001) IEEE Trans. Signal Process. , vol.49 , Issue.9 , pp. 2138-2155
    • Matsumoto, T.1    Nakajima, Y.2    Saito, M.3    Sugi, J.4    Hamagishi, H.5
  • 30
    • 33847389152 scopus 로고    scopus 로고
    • J.C. Principe, J.M. Kuo, Dynamic modelling of chaotic time series with neural networks, in: Proceedings of Neural Information Processing Systems NIPS, vol. 7, 1995, pp. 311-318.
  • 31
    • 0032203424 scopus 로고    scopus 로고
    • Local dynamic modelling with self-organizing maps and applications to nonlinear system identification and control
    • Principe J.C., Wang L., and Motter M.A. Local dynamic modelling with self-organizing maps and applications to nonlinear system identification and control. Proc. IEEE 86 11 (1998)
    • (1998) Proc. IEEE , vol.86 , Issue.11
    • Principe, J.C.1    Wang, L.2    Motter, M.A.3
  • 32
    • 0027662338 scopus 로고
    • Pruning algorithms-a survey
    • Reed R. Pruning algorithms-a survey. IEEE Trans. Neural Networks 4 5 (1993) 740-747
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 33
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • Sietsma J., and Dow R.J.F. Creating artificial neural networks that generalize. Neural Networks 4 (1991) 67-79
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 34
    • 33847420734 scopus 로고    scopus 로고
    • M. Small, Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance, Nonlinear Science Series A, vol. 52, World Scientific, Singapore, 2005.
  • 35
    • 41349101486 scopus 로고    scopus 로고
    • Minimum description length neural networks for time series prediction
    • Small M., and Tse C.K. Minimum description length neural networks for time series prediction. Phys. Rev. E (2002) 66:066701
    • (2002) Phys. Rev. E
    • Small, M.1    Tse, C.K.2
  • 36
    • 2942618690 scopus 로고    scopus 로고
    • Optimal embedding parameters: a modelling paradigm
    • Small M., and Tse C.K. Optimal embedding parameters: a modelling paradigm. Physica D 194 (2004) 283-296
    • (2004) Physica D , vol.194 , pp. 283-296
    • Small, M.1    Tse, C.K.2
  • 37
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • Rand D.A., and Young L.S. (Eds), Springer, New York
    • Takens F. Detecting strange attractors in turbulence. In: Rand D.A., and Young L.S. (Eds). Dynamical Systems and Turbulence (1981), Springer, New York 366-381
    • (1981) Dynamical Systems and Turbulence , pp. 366-381
    • Takens, F.1
  • 38
    • 33847343684 scopus 로고    scopus 로고
    • The Santa Fe Time Series Competition Data 〈URL:http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html〉.
  • 39
    • 33847377371 scopus 로고    scopus 로고
    • Time Series Data Library 〈URL:http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/〉.
  • 41
    • 33847414820 scopus 로고    scopus 로고
    • Minimum description length criterion for modelling of chaotic attractors with multi-layer perceptron networks
    • Zhao Y., and Small M. Minimum description length criterion for modelling of chaotic attractors with multi-layer perceptron networks. IEEE Trans. Circuits Syst. I 52 (2005)
    • (2005) IEEE Trans. Circuits Syst. I , vol.52
    • Zhao, Y.1    Small, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.