-
2
-
-
35949011725
-
Singular-value decomposition and the Grassberger-Procaccia algorithm
-
Albano A.M., Muench J., Schwartz C., Mees A.I., and Rapp P.E. Singular-value decomposition and the Grassberger-Procaccia algorithm. Phys. Rev. A 38 (1988) 3017-3026
-
(1988)
Phys. Rev. A
, vol.38
, pp. 3017-3026
-
-
Albano, A.M.1
Muench, J.2
Schwartz, C.3
Mees, A.I.4
Rapp, P.E.5
-
4
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19 (1974) 716-723
-
(1974)
IEEE Trans. Autom. Control
, vol.19
, pp. 716-723
-
-
Akaike, H.1
-
6
-
-
35048858405
-
-
B. Chakraborty, Y. Manabe, Structural Learning of Neural Network for Continuous Valued Output: Effect of Penalty Term to Hidden Units, Lecture Notes in Computer Science, vol. 3316, Springer, Berlin, 2004, pp. 599-605.
-
-
-
-
7
-
-
0026221027
-
An information criterion for optimal neural network selection
-
Fogel D.B. An information criterion for optimal neural network selection. IEEE Trans. Neural Networks 2 (1991) 490-497
-
(1991)
IEEE Trans. Neural Networks
, vol.2
, pp. 490-497
-
-
Fogel, D.B.1
-
8
-
-
34548696055
-
Independent coordinates for strange attractors from mutual information
-
Fraser A.M., and Swinney H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33 (1986) 1134-1140
-
(1986)
Phys. Rev. A
, vol.33
, pp. 1134-1140
-
-
Fraser, A.M.1
Swinney, H.L.2
-
9
-
-
0000810560
-
-
R. Hegger, H. Kantz, T. Schreiber, Practical implementation of nonlinear time series methods: the TISEAN package, CHAOS 9, 1999, pp. 413-435.
-
-
-
-
10
-
-
0030130724
-
Structural learning with forgetting
-
Ishikawa M. Structural learning with forgetting. Neural Networks 9 3 (1996) 509-521
-
(1996)
Neural Networks
, vol.9
, Issue.3
, pp. 509-521
-
-
Ishikawa, M.1
-
11
-
-
0000497870
-
Embedding as a modelling problem
-
Judd K., and Mees A. Embedding as a modelling problem. Physica D 120 (1998) 273-286
-
(1998)
Physica D
, vol.120
, pp. 273-286
-
-
Judd, K.1
Mees, A.2
-
12
-
-
0006031581
-
Achieving good nonlinear models: keep it simple, vary the embedding, and get the dynamics right
-
Mees A.I. (Ed), Birkhauser, Boston
-
Judd K., Small M., and Mees A.I. Achieving good nonlinear models: keep it simple, vary the embedding, and get the dynamics right. In: Mees A.I. (Ed). Nonlinear Dynamics and Statistics (2001), Birkhauser, Boston 65-80
-
(2001)
Nonlinear Dynamics and Statistics
, pp. 65-80
-
-
Judd, K.1
Small, M.2
Mees, A.I.3
-
13
-
-
0029254124
-
Improving generalization performance by information minimization
-
Kamimura R., Takagi T., and Nakanishi S. Improving generalization performance by information minimization. IEICE Trans. Inform. Syst. E78-D 2 (1995) 163-173
-
(1995)
IEICE Trans. Inform. Syst.
, vol.E78-D
, Issue.2
, pp. 163-173
-
-
Kamimura, R.1
Takagi, T.2
Nakanishi, S.3
-
15
-
-
35949006791
-
Determining embedding dimension for phase-space reconstruction using a geometrical construction
-
Kennel M.B. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45 (1992) 3403-3411
-
(1992)
Phys. Rev. A
, vol.45
, pp. 3403-3411
-
-
Kennel, M.B.1
-
16
-
-
0038528482
-
Recurrent neural network with short-term memory and fast structural learning method
-
Kikuchi S., and Nakanishi M. Recurrent neural network with short-term memory and fast structural learning method. Syst. Comput. Japan 34 6 (2003) 69-79
-
(2003)
Syst. Comput. Japan
, vol.34
, Issue.6
, pp. 69-79
-
-
Kikuchi, S.1
Nakanishi, M.2
-
17
-
-
0007287463
-
Delay time window and plateau onset of the correlation for small data sets
-
Kim S., Eykholt R., and Salas J.D. Delay time window and plateau onset of the correlation for small data sets. Phys. Rev. E 58 (1998) 5676-5682
-
(1998)
Phys. Rev. E
, vol.58
, pp. 5676-5682
-
-
Kim, S.1
Eykholt, R.2
Salas, J.D.3
-
18
-
-
33847353615
-
-
R. Lapedes, R. Farber, Nonlinear signal processing using neural networks: prediction and system modelling, Los Alamos Nat. lab., Los Alamos, NM, Technical Report, LA-UR87-2662, 1987.
-
-
-
-
19
-
-
0030115092
-
Predictive minimum description length criterion for the time series modelling with neural networks
-
Lehtokangas M., et al. Predictive minimum description length criterion for the time series modelling with neural networks. Neural Comput. 8 (1996) 583-593
-
(1996)
Neural Comput.
, vol.8
, pp. 583-593
-
-
Lehtokangas, M.1
-
20
-
-
0035441349
-
Prediction of noisy chaotic time series using an optimal radial basis function neural network
-
Leung H., Lo T., and Wang S. Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Trans. Neural Networks 12 5 (2001) 1163-1172
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, Issue.5
, pp. 1163-1172
-
-
Leung, H.1
Lo, T.2
Wang, S.3
-
21
-
-
0026904282
-
Parameter estimation of finite mixtures using the EM algorithm and information criteria with application to medical image processing
-
Liang Z., Jasaczak R.J., and Coleman R.E. Parameter estimation of finite mixtures using the EM algorithm and information criteria with application to medical image processing. IEEE Trans. Nucl. Sci. 39 4 (1992) 1126-1133
-
(1992)
IEEE Trans. Nucl. Sci.
, vol.39
, Issue.4
, pp. 1126-1133
-
-
Liang, Z.1
Jasaczak, R.J.2
Coleman, R.E.3
-
22
-
-
33847353155
-
-
D.J.C. MacKay, Bayesian methods for adaptive models, Ph.D. Dissertation, Calif. Inst. Tech., Pasadena, 1991.
-
-
-
-
23
-
-
0001025418
-
Bayesian interpolation
-
MacKay D.J.C. Bayesian interpolation. Neural Comput. 4 (1992) 415-447
-
(1992)
Neural Comput.
, vol.4
, pp. 415-447
-
-
MacKay, D.J.C.1
-
24
-
-
0028698662
-
Bayesian non-linear modeling for the energy prediction competition
-
MacKay D.J.C. Bayesian non-linear modeling for the energy prediction competition. ASHRAE Trans. 100 Part 2 (1994) 1053-1062
-
(1994)
ASHRAE Trans.
, vol.100
, Issue.PART 2
, pp. 1053-1062
-
-
MacKay, D.J.C.1
-
25
-
-
33847376892
-
-
Y. Manabe, B. Chakraborty, Estimating embedding parameters using structural learning of neural network, IEEE International Workshop on NSIP 2005, Sapporo, Japan, May, 2005.
-
-
-
-
26
-
-
11144302678
-
-
Y. Manabe, B. Chakraborty, H. Fujita, Structural learning of multilayer feed forward neural networks for continuous valued functions, in: Proceedings of IEEE-MWSCAS 2004, July, 2004, pp. III77-III80.
-
-
-
-
28
-
-
0035447455
-
Reconstructions and predictions of nonlinear dynamical systems: a hierarchical Bayesian approach
-
Matsumoto T., Nakajima Y., Saito M., Sugi J., and Hamagishi H. Reconstructions and predictions of nonlinear dynamical systems: a hierarchical Bayesian approach. IEEE Trans. Signal Process. 49 9 (2001) 2138-2155
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, Issue.9
, pp. 2138-2155
-
-
Matsumoto, T.1
Nakajima, Y.2
Saito, M.3
Sugi, J.4
Hamagishi, H.5
-
30
-
-
33847389152
-
-
J.C. Principe, J.M. Kuo, Dynamic modelling of chaotic time series with neural networks, in: Proceedings of Neural Information Processing Systems NIPS, vol. 7, 1995, pp. 311-318.
-
-
-
-
31
-
-
0032203424
-
Local dynamic modelling with self-organizing maps and applications to nonlinear system identification and control
-
Principe J.C., Wang L., and Motter M.A. Local dynamic modelling with self-organizing maps and applications to nonlinear system identification and control. Proc. IEEE 86 11 (1998)
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
-
-
Principe, J.C.1
Wang, L.2
Motter, M.A.3
-
32
-
-
0027662338
-
Pruning algorithms-a survey
-
Reed R. Pruning algorithms-a survey. IEEE Trans. Neural Networks 4 5 (1993) 740-747
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, Issue.5
, pp. 740-747
-
-
Reed, R.1
-
33
-
-
0026017007
-
Creating artificial neural networks that generalize
-
Sietsma J., and Dow R.J.F. Creating artificial neural networks that generalize. Neural Networks 4 (1991) 67-79
-
(1991)
Neural Networks
, vol.4
, pp. 67-79
-
-
Sietsma, J.1
Dow, R.J.F.2
-
34
-
-
33847420734
-
-
M. Small, Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance, Nonlinear Science Series A, vol. 52, World Scientific, Singapore, 2005.
-
-
-
-
35
-
-
41349101486
-
Minimum description length neural networks for time series prediction
-
Small M., and Tse C.K. Minimum description length neural networks for time series prediction. Phys. Rev. E (2002) 66:066701
-
(2002)
Phys. Rev. E
-
-
Small, M.1
Tse, C.K.2
-
36
-
-
2942618690
-
Optimal embedding parameters: a modelling paradigm
-
Small M., and Tse C.K. Optimal embedding parameters: a modelling paradigm. Physica D 194 (2004) 283-296
-
(2004)
Physica D
, vol.194
, pp. 283-296
-
-
Small, M.1
Tse, C.K.2
-
37
-
-
0000779360
-
Detecting strange attractors in turbulence
-
Rand D.A., and Young L.S. (Eds), Springer, New York
-
Takens F. Detecting strange attractors in turbulence. In: Rand D.A., and Young L.S. (Eds). Dynamical Systems and Turbulence (1981), Springer, New York 366-381
-
(1981)
Dynamical Systems and Turbulence
, pp. 366-381
-
-
Takens, F.1
-
38
-
-
33847343684
-
-
The Santa Fe Time Series Competition Data 〈URL:http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html〉.
-
-
-
-
39
-
-
33847377371
-
-
Time Series Data Library 〈URL:http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/〉.
-
-
-
-
41
-
-
33847414820
-
Minimum description length criterion for modelling of chaotic attractors with multi-layer perceptron networks
-
Zhao Y., and Small M. Minimum description length criterion for modelling of chaotic attractors with multi-layer perceptron networks. IEEE Trans. Circuits Syst. I 52 (2005)
-
(2005)
IEEE Trans. Circuits Syst. I
, vol.52
-
-
Zhao, Y.1
Small, M.2
|