메뉴 건너뛰기




Volumn 34, Issue 6, 2003, Pages 69-79

Recurrent neural network with short-term memory and fast structural learning method

Author keywords

Convergence rate; Fast learning; Generalization ability; Recurrent neural network; Structural learning

Indexed keywords

ASYMPTOTIC STABILITY; BACKPROPAGATION; COMPUTER SIMULATION; FINITE AUTOMATA; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 0038528482     PISSN: 08821666     EISSN: None     Source Type: Journal    
DOI: 10.1002/scj.1206     Document Type: Article
Times cited : (9)

References (51)
  • 1
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: A survey
    • Pearlmutter BA. Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Trans Neural Networks 1995;6:1212-1228.
    • (1995) IEEE Trans Neural Networks , vol.6 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 2
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce English text
    • Sejnowski TJ, Rosenberg CR. Parallel networks that learn to pronounce English text. Complex Systems 1987;1:145-168.
    • (1987) Complex Systems , vol.1 , pp. 145-168
    • Sejnowski, T.J.1    Rosenberg, C.R.2
  • 5
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman JL. Finding structure in time. Cogn Sci 1990;14:179-211.
    • (1990) Cogn Sci , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 6
    • 0001419757 scopus 로고
    • Distributed representations, simple recurrent networks, and grammatical structure
    • Elman JL. Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning 1991;7:195-225.
    • (1991) Machine Learning , vol.7 , pp. 195-225
    • Elman, J.L.1
  • 8
    • 0028391673 scopus 로고
    • Application of the recurrent multilayer perceptron in modeling complex process dynamics
    • Parlos AG, Chong KT, Atiya AF. Application of the recurrent multilayer perceptron in modeling complex process dynamics. IEEE Trans Neural Networks 1994;5:255-266.
    • (1994) IEEE Trans Neural Networks , vol.5 , pp. 255-266
    • Parlos, A.G.1    Chong, K.T.2    Atiya, A.F.3
  • 9
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams RJ, Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1989;1:210-280.
    • (1989) Neural Computation , vol.1 , pp. 210-280
    • Williams, R.J.1    Zipser, D.2
  • 10
    • 0001202597 scopus 로고
    • Learning state space trajectories in recurrent neural networks
    • Pearlmutter BA. Learning state space trajectories in recurrent neural networks. Neural Computation 1989;1:263-269.
    • (1989) Neural Computation , vol.1 , pp. 263-269
    • Pearlmutter, B.A.1
  • 11
    • 0024875962 scopus 로고
    • Adaptive neural oscillator using continuous-time back-propagation learning
    • Doya K, Yoshizawa S. Adaptive neural oscillator using continuous-time back-propagation learning. Neural Networks 1989;2:375-385.
    • (1989) Neural Networks , vol.2 , pp. 375-385
    • Doya, K.1    Yoshizawa, S.2
  • 12
    • 0025095180 scopus 로고
    • A learning algorithm to teach spatiotemporal patterns to recurrent neural networks
    • Sato M. A learning algorithm to teach spatiotemporal patterns to recurrent neural networks. Biol Cybern 1990;62:259-263.
    • (1990) Biol Cybern , vol.62 , pp. 259-263
    • Sato, M.1
  • 13
    • 0002291616 scopus 로고
    • Neural net architectures for temporal sequence processing
    • In Weigend AS, Gershenfeld NA (editors); Addison-Wesley
    • Mozer MC. Neural net architectures for temporal sequence processing. In Weigend AS, Gershenfeld NA (editors). Time series prediction: Forecasting the future and understanding the past. Addison-Wesley; 1993. p 243-264.
    • (1993) Time Series Prediction: Forecasting the Future and Understanding the Past , pp. 243-264
    • Mozer, M.C.1
  • 16
    • 84945787268 scopus 로고
    • Representation and recognition of temporal patterns
    • Port RF. Representation and recognition of temporal patterns. Connect Sci 1990;2:151-176.
    • (1990) Connect Sci , vol.2 , pp. 151-176
    • Port, R.F.1
  • 17
    • 0029342226 scopus 로고
    • On the computational power of Elman-style recurrent networks
    • Kremer SC. On the computational power of Elman-style recurrent networks. IEEE Trans Neural Networks 1995;6:1000-1004.
    • (1995) IEEE Trans Neural Networks , vol.6 , pp. 1000-1004
    • Kremer, S.C.1
  • 18
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986;323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 19
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs RA. Increased rates of convergence through learning rate adaptation. Neural Networks 1988;1:295-307.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 21
    • 0026711368 scopus 로고
    • Improving the convergence of the back-propagation algorithm
    • van Ooyen A, Nienhuis B. Improving the convergence of the back-propagation algorithm. Neural Networks 1992;5:465-471.
    • (1992) Neural Networks , vol.5 , pp. 465-471
    • Van Ooyen, A.1    Nienhuis, B.2
  • 22
    • 0037480118 scopus 로고
    • Accelerating the convergence of the back-propagation method by removing singular points from BP errors
    • (in Japanese)
    • Tanaka A, Komura M. Accelerating the convergence of the back-propagation method by removing singular points from BP errors. Trans IEICE 1992;J75-D-II:1000-1008. (in Japanese)
    • (1992) Trans IEICE , vol.J75-D-II , pp. 1000-1008
    • Tanaka, A.1    Komura, M.2
  • 23
    • 0038155454 scopus 로고
    • A study on initial value setting of the back-propagation learning algorithm
    • (in Japanese)
    • Jia Q, Toad N, Usui S. A study on initial value setting of the back-propagation learning algorithm. Trans IEICE 1990;J73-D-II:1179-1185. (in Japanese)
    • (1990) Trans IEICE , vol.J73-D-II , pp. 1179-1185
    • Jia, Q.1    Toad, N.2    Usui, S.3
  • 24
    • 0038493960 scopus 로고
    • A fast learning for pattern recognition neural networks
    • (in Japanese)
    • Mitani M, Kitsu N, Obori T, Watanabe I. A fast learning for pattern recognition neural networks. Trans IEICE 1994;J77-D-II:211-218. (in Japanese)
    • (1994) Trans IEICE , vol.J77-D-II , pp. 211-218
    • Mitani, M.1    Kitsu, N.2    Obori, T.3    Watanabe, I.4
  • 25
    • 0037817712 scopus 로고
    • Recent topics on network learning algorithms
    • (in Japanese)
    • Ishikawa M. Recent topics on network learning algorithms. J SICE 1991;30:285-290. (in Japanese)
    • (1991) J SICE , vol.30 , pp. 285-290
    • Ishikawa, M.1
  • 26
    • 0027662338 scopus 로고
    • Pruning algorithms-a survey
    • Reed R. Pruning algorithms-A survey. IEEE Trans Neural Networks 1993;4:740-747.
    • (1993) IEEE Trans Neural Networks , vol.4 , pp. 740-747
    • Reed, R.1
  • 27
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • Kwok T-Y, Yeung D-Y. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Trans Neural Networks 1997;8:630-645.
    • (1997) IEEE Trans Neural Networks , vol.8 , pp. 630-645
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 28
    • 84945797434 scopus 로고
    • Dynamic node creation in backpropagation networks
    • Ash T. Dynamic node creation in backpropagation networks. Connect Sci 1989;1:365-375.
    • (1989) Connect Sci , vol.1 , pp. 365-375
    • Ash, T.1
  • 31
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • Sietsma J, Dow RJF. Creating artificial neural networks that generalize. Neural Networks 1991;4:67-79.
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 32
    • 0028413960 scopus 로고
    • A simple and effective method for removal of hidden units and weights
    • Hagiwara M. A simple and effective method for removal of hidden units and weights. Neurocomputing 1994;6:207-218.
    • (1994) Neurocomputing , vol.6 , pp. 207-218
    • Hagiwara, M.1
  • 33
    • 0000991092 scopus 로고
    • Comparing biases for minimal network construction with backpropagation
    • Hanson SJ, Pratt LY. Comparing biases for minimal network construction with backpropagation. Adv Neural Inf Process Syst 1989;1:177-185.
    • (1989) Adv Neural Inf Process Syst , vol.1 , pp. 177-185
    • Hanson, S.J.1    Pratt, L.Y.2
  • 34
    • 0000473247 scopus 로고
    • A back-propagation algorithm with optimal use of hidden units
    • Chauvin Y. A back-propagation algorithm with optimal use of hidden units. Adv Neural Inf Process Syst 1989;1:519-526.
    • (1989) Adv Neural Inf Process Syst , vol.1 , pp. 519-526
    • Chauvin, Y.1
  • 35
    • 0003794792 scopus 로고
    • Experiments on learning by back propagation
    • Tech Rep CMU-CS-86-126, Carnegie-Mellon University
    • Plaut DC, Nowlan SJ, Hinton GE. Experiments on learning by back propagation. Tech Rep CMU-CS-86-126, Carnegie-Mellon University, 1986.
    • (1986)
    • Plaut, D.C.1    Nowlan, S.J.2    Hinton, G.E.3
  • 36
    • 0030130724 scopus 로고    scopus 로고
    • Structural learning with forgetting
    • Ishikawa M. Structural learning with forgetting. Neural Networks 1996;9:509-521.
    • (1996) Neural Networks , vol.9 , pp. 509-521
    • Ishikawa, M.1
  • 37
    • 0026221027 scopus 로고
    • An information criterion for optimal neural network selection
    • Fogel DB. An information criterion for optimal neural network selection. IEEE Trans Neural Networks 1991;2:490-497.
    • (1991) IEEE Trans Neural Networks , vol.2 , pp. 490-497
    • Fogel, D.B.1
  • 38
    • 0028544395 scopus 로고
    • Network information criterion-determining the number of hidden units for an artificial neural network model
    • Murata N, Yoshizawa S, Amari S. Network information criterion-Determining the number of hidden units for an artificial neural network model. IEEE Trans Neural Networks 1994;5:865-872.
    • (1994) IEEE Trans Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 39
    • 58149409989 scopus 로고
    • An interactive activation model of context effects in letter perception: Part 1. An account of basic findings
    • McClelland JL, Rumelhart DE. An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychol Rev 1981;88:375-407.
    • (1981) Psychol Rev , vol.88 , pp. 375-407
    • McClelland, J.L.1    Rumelhart, D.E.2
  • 40
    • 0020006558 scopus 로고
    • An interactive activation model of context effects in letter perception: Part 2. The contextual enhancement effect and some tests and extensions of the model
    • McClelland JL, Rumelhart DE. An interactive activation model of context effects in letter perception: Part 2. The contextual enhancement effect and some tests and extensions of the model. Psychol Rev 1982;89:60-94.
    • (1982) Psychol Rev , vol.89 , pp. 60-94
    • McClelland, J.L.1    Rumelhart, D.E.2
  • 41
    • 0008554931 scopus 로고
    • A focused backpropagation algorithm for temporal pattern recognition
    • Mozer MC. A focused backpropagation algorithm for temporal pattern recognition. Complex Syst 1989;3:349-381.
    • (1989) Complex Syst , vol.3 , pp. 349-381
    • Mozer, M.C.1
  • 42
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • Hinton GE. Connectionist learning procedures. Artif Intell 1989;40:185-234.
    • (1989) Artif Intell , vol.40 , pp. 185-234
    • Hinton, G.E.1
  • 43
    • 0013268589 scopus 로고
    • Error functions to improve learning speed in PDP models
    • (in Japanese)
    • Tan Y, Kato Y, Ejima T. Error functions to improve learning speed in PDP models. Trans IEICE 1990;J73-D-II:2022-2028. (in Japanese)
    • (1990) Trans IEICE , vol.J73-D-II , pp. 2022-2028
    • Tan, Y.1    Kato, Y.2    Ejima, T.3
  • 44
    • 0011609864 scopus 로고
    • A structural learning of connectionist models using forgetting
    • (in Japanese)
    • Ishikawa M. A structural learning of connectionist models using forgetting. J JSAI 1989;5:595-603. (in Japanese)
    • (1989) J JSAI , vol.5 , pp. 595-603
    • Ishikawa, M.1
  • 45
    • 0038155456 scopus 로고
    • Discovery of rules and generalization by structural learning of neural networks
    • (in Japanese)
    • Ishikawa M, Yamamoto H. Discovery of rules and generalization by structural learning of neural networks. Brain & Neural Networks 1994;1:57-63. (in Japanese)
    • (1994) Brain & Neural Networks , vol.1 , pp. 57-63
    • Ishikawa, M.1    Yamamoto, H.2
  • 46
    • 0038493961 scopus 로고    scopus 로고
    • Learning temporal sequences by complex neurons with local feedback
    • (in Japanese)
    • Kinouchi M, Hagiwara M. Learning temporal sequences by complex neurons with local feedback. Trans IEE Japan 1996;116-C:748-754. (in Japanese)
    • (1996) Trans IEE Japan , vol.116 C , pp. 748-754
    • Kinouchi, M.1    Hagiwara, M.2
  • 48
    • 62549090828 scopus 로고    scopus 로고
    • The great energy predictor shootout-the first building data analysis and prediction, concept and summary
    • Kreider JF, Habel JS. The great energy predictor shootout-The first building data analysis and prediction, concept and summary. Proc. ASHRAE Seminar, 1993. ftp://ftp.cs.colorado.edu/pub/cs/energy-shootout
    • Proc. ASHRAE Seminar, 1993
    • Kreider, J.F.1    Habel, J.S.2
  • 49
    • 0030576749 scopus 로고    scopus 로고
    • Prediction of time series by a structural learning of neural networks
    • Ishikawa M, Moriyama T. Prediction of time series by a structural learning of neural networks. Fuzzy Sets Syst 1996;82:167-176.
    • (1996) Fuzzy Sets Syst , vol.82 , pp. 167-176
    • Ishikawa, M.1    Moriyama, T.2
  • 50
    • 0037480119 scopus 로고    scopus 로고
    • Prediction of time series by structural learning of recurrent neural networks
    • Shimada H, Ishikawa M. Prediction of time series by structural learning of recurrent neural networks. Proc IIZUKA'98, p 610-614.
    • Proc IIZUKA'98 , pp. 610-614
    • Shimada, H.1    Ishikawa, M.2
  • 51
    • 0037817714 scopus 로고
    • The recurrent SOLAR algorithm
    • (in Japanese)
    • Demura K, Kajiura M, Anzai Y. The recurrent SOLAR algorithm. Trans IEICE 1995;J78-D-II:962-972. (in Japanese)
    • (1995) Trans IEICE , vol.J78-D-II , pp. 962-972
    • Demura, K.1    Kajiura, M.2    Anzai, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.