-
1
-
-
42749105486
-
Constraining the topology of neural networks to ensure dynamics with symmetry properties
-
L.A. Aguirre, R. Lopes, G. Amaral, and C. Letellier. Constraining the topology of neural networks to ensure dynamics with symmetry properties. Physical Review E, 69, 2004.
-
(2004)
Physical Review E
, vol.69
-
-
Aguirre, L.A.1
Lopes, R.2
Amaral, G.3
Letellier, C.4
-
3
-
-
78650848517
-
A comparative study of LS-SVMs applied to the silverbox identification problem
-
M. Espinoza, K. Pelckmans, L. Hoegaerts, J.A.K. Suykens, and B De Moor. A comparative study of LS-SVMs applied to the silverbox identification problem. In Proceedings of the 6th IFAC Conference on Nonlinear Control Systems (NOLCOS), 2004.
-
(2004)
Proceedings of the 6th IFAC Conference on Nonlinear Control Systems (NOLCOS)
-
-
Espinoza, M.1
Pelckmans, K.2
Hoegaerts, L.3
Suykens, J.A.K.4
De Moor, B.5
-
5
-
-
33847204737
-
-
M. Espinoza, J.A.K. Suykens, and B. De Moor. Model structure determination and identification with kernel based partially linear models. Technical Report 04-110, ESAT-SCD-SISTA, K.U.Leuven, Belgium, 2004.
-
M. Espinoza, J.A.K. Suykens, and B. De Moor. Model structure determination and identification with kernel based partially linear models. Technical Report 04-110, ESAT-SCD-SISTA, K.U.Leuven, Belgium, 2004.
-
-
-
-
6
-
-
0038259114
-
Classes of kernel for machine learning: A statistics perspective
-
M. Genton. Classes of kernel for machine learning: A statistics perspective. Journal of Machine Learning Research, 2:299-312, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 299-312
-
-
Genton, M.1
-
7
-
-
0030109138
-
Identification of non-linear systems using empirical data and prior knowledge-an optimization approach
-
T. Johansen. Identification of non-linear systems using empirical data and prior knowledge-an optimization approach. Automatica, 32(3):337-356, 1996.
-
(1996)
Automatica
, vol.32
, Issue.3
, pp. 337-356
-
-
Johansen, T.1
-
8
-
-
0000597408
-
Comparison of approximate methods for handling hyperparameters
-
D.J.C. MacKay. Comparison of approximate methods for handling hyperparameters. Neural Computation, 11:1035-1068, 1999.
-
(1999)
Neural Computation
, vol.11
, pp. 1035-1068
-
-
MacKay, D.J.C.1
-
9
-
-
0025490985
-
Networks for approximation and learning
-
T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 78:1481-1497, 1990.
-
(1990)
Proceedings of the IEEE
, vol.78
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
10
-
-
0038177952
-
Fast approximate identification of nonlinear systems
-
J. Schoukens, G. Nemeth, Y. Crama, P. abd Rolain, and R. Pintelon. Fast approximate identification of nonlinear systems. Automatica, 39(7), 2003.
-
(2003)
Automatica
, vol.39
, Issue.7
-
-
Schoukens, J.1
Nemeth, G.2
Crama, Y.3
abd Rolain, P.4
Pintelon, R.5
-
11
-
-
0029483769
-
Nonlinear Black-box Modelling in System Identification: A Unified Overview
-
J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, P. Glorennec, H. Hjalmarsson, and A. Juditsky. Nonlinear Black-box Modelling in System Identification: a Unified Overview. Automatica, 31:1691-1724, 1995.
-
(1995)
Automatica
, vol.31
, pp. 1691-1724
-
-
Sjöberg, J.1
Zhang, Q.2
Ljung, L.3
Benveniste, A.4
Deylon, B.5
Glorennec, P.6
Hjalmarsson, H.7
Juditsky, A.8
-
12
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
J.A.K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, 48(1-4):85-105, 2002.
-
(2002)
Neurocomputing
, vol.48
, Issue.1-4
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
13
-
-
0037695279
-
-
World Scientific, Singapore
-
J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle. Least Squares Support Vector Machines. World Scientific, Singapore, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
|