메뉴 건너뛰기




Volumn 37, Issue 13, 2004, Pages 369-374

A comparative study of LS-SVM's applied to the Silver Box identification problem

Author keywords

Identification; Nonlinear models

Indexed keywords

IDENTIFICATION (CONTROL SYSTEMS); LEAST SQUARES APPROXIMATIONS; MEAN SQUARE ERROR; NONLINEAR SYSTEMS; REGRESSION ANALYSIS; SILVER;

EID: 78650848517     PISSN: 14746670     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1016/S1474-6670(17)31251-X     Document Type: Conference Paper
Times cited : (28)

References (17)
  • 3
    • 0012993529 scopus 로고    scopus 로고
    • Orthogonal series density estimation and the kernel eigenvalue problem
    • Giruiami, M. "Orthogonal Series Density Estimation and the Kernel Eigenvalue Problem", Neural Computation 14(3), 669-688, 2003.
    • (2003) Neural Computation , vol.14 , Issue.3 , pp. 669-688
    • Giruiami, M.1
  • 4
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • Girosi, F. "An Equivalence Between Sparse Approximation and Support Vector Machines", Neural Computation, 10(6), 1455-1480, 1998
    • (1998) Neural Computation , vol.10 , Issue.6 , pp. 1455-1480
    • Girosi, F.1
  • 5
    • 0001795946 scopus 로고
    • Ridge regression: Biased estimation for non orthogonal problems
    • Hoerl, A. E. and Kennard, R. W. "Ridge Regression: Biased Estimation for Non Orthogonal Problems", Technometrics 8, 27-51, 1970.
    • (1970) Technometrics , vol.8 , pp. 27-51
    • Hoerl, A.E.1    Kennard, R.W.2
  • 7
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
    • MacKay, D. J. C. "Probable Networks and Plausible Predictions - A Review of Practical Bayesian Methods for Supervised Neural Networks", Networks: Computations in Neural Systems, 6, 469-505, 1995.
    • (1995) Networks: Computations in Neural Systems , vol.6 , pp. 469-505
    • MacKay, D.J.C.1
  • 8
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio, T. and Girosi, F. "Networks for Approximation and Learning", Proceedings of the IEEE, 78(9), 1481-1497, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 9
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel hilbert space
    • Rosipal R. and Trejo, J. "Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space", Journal of Machine Learning Research, 2, 97-123, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, J.2
  • 10
    • 1542313354 scopus 로고    scopus 로고
    • The stability of kernel principal components analysis and its relation to the process eigenspectrum
    • MIT Press
    • Shawe-Taylor, J. and Williams, C. K. I. "The Stability of Kernel Principal Components Analysis and its Relation to the Process Eigenspectrum", in Advances in Neural Information Processing Systems 15, MIT Press, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15
    • Shawe-Taylor, J.1    Williams, C.K.I.2
  • 13
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machines classifiers
    • Suykens, J. A. K., Vandewalle, J. "Least Squares Support Vector Machines Classifiers", Neural Processing Letters 9, 293-300, (1999).
    • (1999) Neural Processing Letters , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 14
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • Suykens J. A. K., De Brabanter J., Lukas, L. Vandewalle J., "Weighted Least Squares Support Vector Machines: Robustness and Sparse Approximation", Neurocomputing, vol. 48, no. 1-4, pp. 85-105, 2002.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 17
    • 0000350486 scopus 로고    scopus 로고
    • Using the nyström method to speed up kernel machines
    • T. Leen, T. Dietterieh, V. Tresp Eds., MIT press
    • Williams, C. K. I and Seeger, M. "Using the Nyström Method to Speed Up Kernel Machines", in T. Leen, T. Dietterieh, V. Tresp (Eds.), Proc. NIPS-2000, vol 13., MIT press.
    • Proc. NIPS-2000 , vol.13
    • Williams, C.K.I.1    Seeger, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.