메뉴 건너뛰기




Volumn 27, Issue 4, 2006, Pages 223-231

An efficient intrusion detection system using a boosting-based learning algorithm

Author keywords

Boosting algorithm; BP neural network; Intrusion detection; KDDCUP'99 contest; Misclassification cost; Prediction confidence

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA STRUCTURES; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 33847094245     PISSN: 09528091     EISSN: None     Source Type: Journal    
DOI: 10.1504/IJCAT.2006.011994     Document Type: Article
Times cited : (7)

References (16)
  • 1
    • 33847156085 scopus 로고    scopus 로고
    • PNrule: A new framework for learning classifier models in data mining (a case-study in network intrusion detection)
    • April, Chicago, IL
    • Agarwal, R. and Joshi, V.M. (2001) 'PNrule: a new framework for learning classifier models in data mining (a case-study in network intrusion detection)', Proceedings of the 1st SIAM Conference on Data Mining, April, Chicago, IL.
    • (2001) Proceedings of the 1st SIAM Conference on Data Mining
    • Agarwal, R.1    Joshi, V.M.2
  • 4
    • 0038428854 scopus 로고    scopus 로고
    • Results of the KDD'99 classifier learning
    • Elkan, C. (2000) 'Results of the KDD'99 classifier learning', ACM SIGKDD Explorations, Vol. 1, No. 2, pp.63, 64.
    • (2000) ACM SIGKDD Explorations , vol.1 , Issue.2
    • Elkan, C.1
  • 7
    • 0038458145 scopus 로고    scopus 로고
    • Evolving fuzzy classifiers for intrusion detection
    • IEEE Computer Society Press and the National Security Agency, United States Military Academy, West Point, NY
    • Gomez, J. and Dasgupta, D. (2002) 'Evolving fuzzy classifiers for intrusion detection', CD-ROM Proceedings of the 3rd Annual Information Assurance Workshop, IEEE Computer Society Press and the National Security Agency, United States Military Academy, West Point, NY.
    • (2002) CD-ROM Proceedings of the 3rd Annual Information Assurance Workshop
    • Gomez, J.1    Dasgupta, D.2
  • 8
    • 33847150221 scopus 로고    scopus 로고
    • Data Mining for Network Intrusion Detection; Experience with KDDCup'99 Data set
    • March, Harford Community College, Aberdeen, Maryland
    • Kumar, V. (2002) Data Mining for Network Intrusion Detection; Experience with KDDCup'99 Data set, Presentation in Workshop on Network Intrusion Detection, March, Harford Community College, Aberdeen, Maryland.
    • (2002) Presentation in Workshop on Network Intrusion Detection
    • Kumar, V.1
  • 9
    • 84964411176 scopus 로고    scopus 로고
    • Lee, W., Stolfo, S. and Chan, P. (2001) 'Real time data mining-based intrusion detection', Proceedings of the 2nd DARPA Information Survivability Conference & Exposition (DISCEX II'01), I, pp.0089-0100.
    • Lee, W., Stolfo, S. and Chan, P. (2001) 'Real time data mining-based intrusion detection', Proceedings of the 2nd DARPA Information Survivability Conference & Exposition (DISCEX II'01), Vol. I, pp.0089-0100.
  • 11
    • 1642354876 scopus 로고    scopus 로고
    • KDD-99 Classifier Learning Contest LLSOFT'S Results Overview
    • Levin, I. (2000) KDD-99 Classifier Learning Contest LLSOFT'S Results Overview, ACM SIGKDD Explorations, Vol. 1, No. 2, pp.67-75.
    • (2000) ACM SIGKDD Explorations , vol.1 , Issue.2 , pp. 67-75
    • Levin, I.1
  • 12
    • 0347606556 scopus 로고    scopus 로고
    • Winning the KDD99 classification cup: Bagged boosting
    • Pfahringer, B. (2000) 'Winning the KDD99 classification cup: bagged boosting', ACM SIGKDD Explorations, Vol. 1, No. 2, pp.65, 66.
    • (2000) ACM SIGKDD Explorations , vol.1 , Issue.2
    • Pfahringer, B.1
  • 13
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Robert, S. and Yoram, S. (1999) 'Improved boosting algorithms using confidence-rated predictions', Machine Learning, Vol. 37, No. 3, pp.297-336.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Robert, S.1    Yoram, S.2
  • 14
    • 33847152729 scopus 로고    scopus 로고
    • Development of an Intrusion Detection System through Machine Learning and Rule Based Algorithms for Networked Computing
    • Univ. of Toledo
    • Sabhnani, M. (2002) Development of an Intrusion Detection System through Machine Learning and Rule Based Algorithms for Networked Computing, Thesis Presentation in EECS Dept. Univ. of Toledo.
    • (2002) Thesis Presentation in EECS Dept
    • Sabhnani, M.1
  • 15
    • 1642355954 scopus 로고    scopus 로고
    • Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context
    • Technologies and Applications, pp
    • Sabhnani, M. and Serpen, G. (2003) 'Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context', Proceedings of International Conference on Machine Learning: Models, Technologies and Applications, pp.209-215.
    • (2003) Proceedings of International Conference on Machine Learning: Models , pp. 209-215
    • Sabhnani, M.1    Serpen, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.