메뉴 건너뛰기




Volumn 63, Issue 3, 2002, Pages 185-196

Short-term load forecasting based on artificial neural networks parallel implementation

Author keywords

Gaussian encoding neural networks; Moving window regression training; Radial basis networks; Real time recurrent neural networks; Short term load forecasting

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; DATA REDUCTION; ELECTRIC LOADS; ERROR STATISTICS; RADIAL BASIS FUNCTION NETWORKS; REAL TIME SYSTEMS; REGRESSION ANALYSIS;

EID: 0037191007     PISSN: 03787796     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0378-7796(02)00123-2     Document Type: Article
Times cited : (96)

References (24)
  • 1
    • 0018924010 scopus 로고
    • IEEE Committee report, Load forecasting bibliography Phase I
    • IEEE Committee report, Load forecasting bibliography Phase I, IEEE Trans. Power Appl. Syst. 99 (1980) 53-58.
    • (1980) IEEE Trans. Power Appl. Syst. , vol.99 , pp. 53-58
  • 2
    • 0024764917 scopus 로고
    • Analysis and evaluation of five short-term load forecasting techniques
    • Moghram I., Rahman S. Analysis and evaluation of five short-term load forecasting techniques. IEEE Trans. Power Syst. 4:(4):1989;1484-1491.
    • (1989) IEEE Trans. Power Syst. , vol.4 , Issue.4 , pp. 1484-1491
    • Moghram, I.1    Rahman, S.2
  • 3
    • 0030195189 scopus 로고    scopus 로고
    • Regularized orthogonal least squares algorithm for constructing radial basis function networks
    • Chen S., Chng E. Regularized orthogonal least squares algorithm for constructing radial basis function networks. Int. J. Control. 64:(5):1996;829-837.
    • (1996) Int. J. Control , vol.64 , Issue.5 , pp. 829-837
    • Chen, S.1    Chng, E.2
  • 4
    • 0020003295 scopus 로고
    • On-Line load forecasting for energy control center applications
    • Irisarri G., Widergren S. On-Line load forecasting for energy control center applications. IEEE Trans. Power Appl. Syst. 101:(1):1982;71-78.
    • (1982) IEEE Trans. Power Appl. Syst. , vol.101 , Issue.1 , pp. 71-78
    • Irisarri, G.1    Widergren, S.2
  • 7
    • 0025519350 scopus 로고
    • Short-term load forecasting of Taiwan power system using a knowledge based expert system
    • Ho K.L., et al. Short-term load forecasting of Taiwan power system using a knowledge based expert system. IEEE Trans. Power Syst. 5:(4):1990;1214-1219.
    • (1990) IEEE Trans. Power Syst. , vol.5 , Issue.4 , pp. 1214-1219
    • Ho, K.L.1
  • 8
    • 4344570804 scopus 로고
    • An expert system based algorithm for short-term load forecast
    • Rahman S., Bhatnagar R. An expert system based algorithm for short-term load forecast. IEEE Trans. Power Syst. AS-101:1982;9.
    • (1982) IEEE Trans. Power Syst. , vol.AS-101 , pp. 9
    • Rahman, S.1    Bhatnagar, R.2
  • 9
    • 0002772233 scopus 로고
    • A study on neural networks for short-term load forecasting
    • Seattle, July
    • K. Lee, Y. Cha, C. Ku, A study on neural networks for short-term load forecasting, Proc. ANNPS '91, Seattle, July (1991) 26-30.
    • (1991) Proc. ANNPS '91 , pp. 26-30
    • Lee, K.1    Cha, Y.2    Ku, C.3
  • 10
    • 0027543854 scopus 로고
    • Neural network based short-term load forecasting
    • Lu C.N., Wu H.T., Vemuri S. Neural network based short-term load forecasting. IEEE Trans. Power Syst. 8:(1):1993;337-342.
    • (1993) IEEE Trans. Power Syst. , vol.8 , Issue.1 , pp. 337-342
    • Lu, C.N.1    Wu, H.T.2    Vemuri, S.3
  • 12
    • 0030143484 scopus 로고    scopus 로고
    • A neural network short-term load forecasting model for the Greek power system
    • Bakirtzis A., Petridis V., Klartzis S. A neural network short-term load forecasting model for the Greek power system. IEEE Trans. Power Syst. 11:(2):1996;858-863.
    • (1996) IEEE Trans. Power Syst. , vol.11 , Issue.2 , pp. 858-863
    • Bakirtzis, A.1    Petridis, V.2    Klartzis, S.3
  • 13
    • 0028548319 scopus 로고
    • An implementation of a neural network based load forecasting model for the EMS
    • Papalexopoulos A., How S., Peng T.M. An implementation of a neural network based load forecasting model for the EMS. IEEE Trans. Power Syst. 9:(4):1994;1956-1962.
    • (1994) IEEE Trans. Power Syst. , vol.9 , Issue.4 , pp. 1956-1962
    • Papalexopoulos, A.1    How, S.2    Peng, T.M.3
  • 14
    • 0032495097 scopus 로고    scopus 로고
    • Evolving artificial neural networks for short-term load forecasting
    • Srinivasan, Dipti. Evolving artificial neural networks for short-term load forecasting. Neurocomputing. 23:1998;265-276.
    • (1998) Neurocomputing , vol.23 , pp. 265-276
    • Srinivasan1    Dipti2
  • 16
    • 0003488040 scopus 로고    scopus 로고
    • Artificial neural networks with applications to power systems
    • IEEE Service Center, NJ
    • M. El-Sharkawi, D. Niebur, Artificial neural networks with applications to power systems, IEEE Catalog No 96TP112-0, IEEE Service Center, NJ, 1996.
    • (1996) IEEE Catalog , vol.T21
    • El-Sharkawi, M.1    Niebur, D.2
  • 17
    • 0032593004 scopus 로고    scopus 로고
    • Short-term load forecasting with local ANN predictors
    • Drezga I., Rahman S. Short-term load forecasting with local ANN predictors. IEEE Trans. Power Syst. 14:1999;3.
    • (1999) IEEE Trans. Power Syst. , vol.14 , pp. 3
    • Drezga, I.1    Rahman, S.2
  • 21
    • 0029253483 scopus 로고
    • Random activation weight neural net (RAWN) for fast non-iterative training
    • Te Braake H.A.B., Van Straten G. Random activation weight neural net (RAWN) for fast non-iterative training. Eng. Appl. Artif. Intell. 8:(1):1995;71-80.
    • (1995) Eng. Appl. Artif. Intell. , vol.8 , Issue.1 , pp. 71-80
    • Te Braake, H.A.B.1    Van Straten, G.2
  • 22
    • 0011044237 scopus 로고
    • Fatigue life prediction using a new moving window regression method
    • Stavrakakis G.S., Pouliezos A. Fatigue life prediction using a new moving window regression method. Mech. Syst. Signal Processing. 5:(4):1991;327-340.
    • (1991) Mech. Syst. Signal Processing , vol.5 , Issue.4 , pp. 327-340
    • Stavrakakis, G.S.1    Pouliezos, A.2
  • 23
    • 0035926632 scopus 로고    scopus 로고
    • Overview and comparison of long-term forecasting techniques for a fast developing utility: Part I
    • Kandil M.S., El-Debeiky S.M., Hasanien N.E. Overview and comparison of long-term forecasting techniques for a fast developing utility: part I. Electric Power Syst. Res. 58:2001;11-17.
    • (2001) Electric Power Syst. Res. , vol.58 , pp. 11-17
    • Kandil, M.S.1    El-Debeiky, S.M.2    Hasanien, N.E.3
  • 24
    • 0035964832 scopus 로고    scopus 로고
    • An adaptive neural-wavelet model for short term load forecasting
    • Zhang B.-L., Dong Z.-Y. An adaptive neural-wavelet model for short term load forecasting. Electric Power Syst. Res. 59:2001;121-129.
    • (2001) Electric Power Syst. Res. , vol.59 , pp. 121-129
    • Zhang, B.-L.1    Dong, Z.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.