메뉴 건너뛰기




Volumn 135, Issue 1, 2007, Pages 186-202

An ensemble-based smoother with retrospectively updated weights for highly nonlinear systems

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; DATA PROCESSING; KALMAN FILTERING; MARKOV PROCESSES; MONTE CARLO METHODS; PROBABILITY DISTRIBUTIONS;

EID: 33846652430     PISSN: 00270644     EISSN: None     Source Type: Journal    
DOI: 10.1175/MWR3353.1     Document Type: Article
Times cited : (14)

References (50)
  • 1
    • 23744460629 scopus 로고    scopus 로고
    • Accelerated Monte Carlo for optimal estimation of time series
    • Alexander, F. J., G. L. Eyink, and J. M. Restrepo, 2005: Accelerated Monte Carlo for optimal estimation of time series. J. Stat. Phys., 119, 1331-1345.
    • (2005) J. Stat. Phys. , vol.119 , pp. 1331-1345
    • Alexander, F.J.1    Eyink, G.L.2    Restrepo, J.M.3
  • 2
    • 0033500692 scopus 로고    scopus 로고
    • A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts
    • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741-2758.
    • (1999) Mon. Wea. Rev. , vol.127 , pp. 2741-2758
    • Anderson, J.L.1    Anderson, S.L.2
  • 3
    • 0020934023 scopus 로고
    • A stochastic-dynamic model for the spatial structure of forecast error statistics
    • Balgovind, R., A. Dalcher, M. Ghil, and E. Kalnay, 1983: A stochastic-dynamic model for the spatial structure of forecast error statistics. Mon. Wea. Rev., 111, 701-722.
    • (1983) Mon. Wea. Rev. , vol.111 , pp. 701-722
    • Balgovind, R.1    Dalcher, A.2    Ghil, M.3    Kalnay, E.4
  • 4
    • 1642360010 scopus 로고    scopus 로고
    • Toward a nonlinear ensemble filter for high-dimensional systems
    • doi:10.1029/2002JD002900
    • Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res., 108, 8775, doi:10.1029/2002JD002900.
    • (2003) J. Geophys. Res. , vol.108 , pp. 8775
    • Bengtsson, T.1    Snyder, C.2    Nychka, D.3
  • 6
    • 0032439201 scopus 로고    scopus 로고
    • Analysis scheme in the ensemble Kalman filter
    • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719-1724.
    • (1998) Mon. Wea. Rev. , vol.126 , pp. 1719-1724
    • Burgers, G.1    van Leeuwen, P.J.2    Evensen, G.3
  • 7
    • 0001696802 scopus 로고
    • A fixed-lag Kalman smoother for retrospective data assimilation
    • Cohn, S. E., N. S. Sivakumaran, and R. Todling, 1994: A fixed-lag Kalman smoother for retrospective data assimilation. Mon. Wea. Rev., 122, 2838-2867.
    • (1994) Mon. Wea. Rev. , vol.122 , pp. 2838-2867
    • Cohn, S.E.1    Sivakumaran, N.S.2    Todling, R.3
  • 8
    • 0001821084 scopus 로고    scopus 로고
    • Particle filters - A theoretical perspective
    • A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer
    • Crisan, D., 2001: Particle filters - A theoretical perspective. Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer, 17-41.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 17-41
    • Crisan, D.1
  • 10
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • Doucet, A., S. J. Godsill, and C. Andrieu, 2000: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput., 10, 197-208.
    • (2000) Stat. Comput. , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.J.2    Andrieu, C.3
  • 11
    • 0003665481 scopus 로고    scopus 로고
    • Doucet, A., N. de Freitas, and N. Gordon, Eds., Springer-Verlag
    • Doucet, A., N. de Freitas, and N. Gordon, Eds., 2001: Sequential Monte Carlo Methods in Practice. Springer-Verlag, 581 pp.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 581
  • 12
    • 0031464889 scopus 로고    scopus 로고
    • Optimal prediction of forecast error covariances through singular vectors
    • Ehrendorfer, M., and J. J. Tribbia, 1997: Optimal prediction of forecast error covariances through singular vectors. J. Atmos. Sci., 54, 286-313.
    • (1997) J. Atmos. Sci. , vol.54 , pp. 286-313
    • Ehrendorfer, M.1    Tribbia, J.J.2
  • 13
    • 0031400136 scopus 로고    scopus 로고
    • What is an adjoint model?
    • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 2557-2591.
    • (1997) Bull. Amer. Meteor. Soc. , vol.78 , pp. 2557-2591
    • Errico, R.M.1
  • 14
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics
    • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 143-10 162.
    • (1994) J. Geophys. Res. , vol.99 , pp. 10143-10162
    • Evensen, G.1
  • 15
    • 84884550570 scopus 로고    scopus 로고
    • The Ensemble Kalman Filter: Theoretical formulation and practical implementation
    • Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343-367.
    • (2003) Ocean Dyn. , vol.53 , pp. 343-367
    • Evensen, G.1
  • 16
    • 0033942436 scopus 로고    scopus 로고
    • An ensemble Kalman smoother for nonlinear dynamics
    • Evensen, G., and P. J. van Leeuwen, 2000: An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 128, 1852-1867.
    • (2000) Mon. Wea. Rev. , vol.128 , pp. 1852-1867
    • Evensen, G.1    van Leeuwen, P.J.2
  • 17
    • 0034287911 scopus 로고    scopus 로고
    • Most probable histories for nonlinear dynamics: Tracking climate transitions
    • Eyink, G. L., and J. M. Restrepo, 2000: Most probable histories for nonlinear dynamics: Tracking climate transitions. J. Stat. Phys., 101, 459-472.
    • (2000) J. Stat. Phys. , vol.101 , pp. 459-472
    • Eyink, G.L.1    Restrepo, J.M.2
  • 19
    • 0001198970 scopus 로고    scopus 로고
    • Advances in sequential estimation for atmospheric and oceanic flows
    • Ghil, M., 1997: Advances in sequential estimation for atmospheric and oceanic flows. J. Meteor. Soc. Japan, 75, 289-304.
    • (1997) J. Meteor. Soc. Japan , vol.75 , pp. 289-304
    • Ghil, M.1
  • 20
    • 0002517089 scopus 로고    scopus 로고
    • Introducing Markov chain Monte Carlo
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds., Chapman and Hall
    • Gilks, W. R., S. Richardson, and D. J. Spiegelhalter, 1996: Introducing Markov chain Monte Carlo. Markov Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds., Chapman and Hall, 1-19.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 1-19
    • Gilks, W.R.1    Richardson, S.2    Spiegelhalter, D.J.3
  • 21
    • 0008782869 scopus 로고    scopus 로고
    • Improvement strategies for Monte Carlo particle filters
    • A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer-Verlag
    • Godsill, S. J., and T. Clapp, 2001: Improvement strategies for Monte Carlo particle filters. Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer-Verlag, 139-158.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 139-158
    • Godsill, S.J.1    Clapp, T.2
  • 22
    • 2142848605 scopus 로고    scopus 로고
    • Monte Carlo smoothing for nonlinear time series
    • Godsill, S. J., A. Doucet, and M. West, 2004: Monte Carlo smoothing for nonlinear time series. J. Amer. Stat. Assoc., 99, 156-168.
    • (2004) J. Amer. Stat. Assoc. , vol.99 , pp. 156-168
    • Godsill, S.J.1    Doucet, A.2    West, M.3
  • 23
    • 3543035224 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for high dimensional inversion in remote sensing
    • Haario, H., M. Laine, M. Lehtinen, E. Saksman, and J. Tamminen, 2004: Markov chain Monte Carlo methods for high dimensional inversion in remote sensing. J. Roy. Stat. Soc., 66B, 591-607.
    • (2004) J. Roy. Stat. Soc. , vol.66 B , pp. 591-607
    • Haario, H.1    Laine, M.2    Lehtinen, M.3    Saksman, E.4    Tamminen, J.5
  • 24
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K., 1970: Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 25
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble Kalman filter technique
    • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796-811.
    • (1998) Mon. Wea. Rev. , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 26
    • 0032221057 scopus 로고    scopus 로고
    • Monte Carlo approximations for general state space models
    • Hürzeler, M., and H. R. Künsch, 1998: Monte Carlo approximations for general state space models. J. Comput. Graph. Stat., 7, 175-193.
    • (1998) J. Comput. Graph. Stat. , vol.7 , pp. 175-193
    • Hürzeler, M.1    Künsch, H.R.2
  • 29
    • 0036965503 scopus 로고    scopus 로고
    • Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model
    • Keppenne, C. L., and M. M. Rienecker, 2002: Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model. Mon. Wea. Rev., 130, 2951-2965.
    • (2002) Mon. Wea. Rev. , vol.130 , pp. 2951-2965
    • Keppenne, C.L.1    Rienecker, M.M.2
  • 31
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • Kitagawa, G., 1996: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat., 5, 1-25.
    • (1996) J. Comput. Graph. Stat. , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 32
    • 4444303259 scopus 로고    scopus 로고
    • Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth
    • Lawson, W. G., and J. A. Hansen, 2004: Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth. Mon. Wea. Rev., 132, 1966-1981.
    • (2004) Mon. Wea. Rev. , vol.132 , pp. 1966-1981
    • Lawson, W.G.1    Hansen, J.A.2
  • 33
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • Liu, J. S., and R. Chen, 1998: Sequential Monte Carlo methods for dynamic systems. J. Amer. Stat. Assoc., 93, 1032-1044.
    • (1998) J. Amer. Stat. Assoc. , vol.93 , pp. 1032-1044
    • Liu, J.S.1    Chen, R.2
  • 34
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 37
    • 0036734546 scopus 로고    scopus 로고
    • Ensemble generation for models of multimodel systems
    • Miller, R. N., and L. L. Ehret, 2002: Ensemble generation for models of multimodel systems. Mon. Wea. Rev., 130, 2313-2333.
    • (2002) Mon. Wea. Rev. , vol.130 , pp. 2313-2333
    • Miller, R.N.1    Ehret, L.L.2
  • 38
    • 0028554556 scopus 로고
    • Advanced data assimilation in strongly nonlinear dynamical systems
    • Miller, R. N., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51, 1037-1056.
    • (1994) J. Atmos. Sci. , vol.51 , pp. 1037-1056
    • Miller, R.N.1    Ghil, M.2    Gauthiez, F.3
  • 39
    • 0032764305 scopus 로고    scopus 로고
    • Data assimilation into nonlinear stochastic models
    • Miller, R. N., E. F. Carter, and S. T. Blue, 1999: Data assimilation into nonlinear stochastic models. Tellus, 51A, 167-194.
    • (1999) Tellus , vol.51 A , pp. 167-194
    • Miller, R.N.1    Carter, E.F.2    Blue, S.T.3
  • 41
    • 8844258829 scopus 로고    scopus 로고
    • A local ensemble Kalman filter for atmospheric data assimilation
    • Coauthors
    • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415-428.
    • (2004) Tellus , vol.56 A , pp. 415-428
    • Ott, E.1
  • 42
    • 0035335074 scopus 로고    scopus 로고
    • Stochastic methods for sequential data assimilation in strongly nonlinear systems
    • Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129, 1194-1207.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 1194-1207
    • Pham, D.T.1
  • 44
    • 0001789959 scopus 로고    scopus 로고
    • Introduction to general state-space Markov chain theory
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds., Chapman and Hall
    • Tierney, L., 1996: Introduction to general state-space Markov chain theory. Markov Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds., Chapman and Hall, 59-74.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 59-74
    • Tierney, L.1
  • 45
    • 0001509508 scopus 로고
    • Ensemble forecasting at NMC: The generation of perturbations
    • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317-2330.
    • (1993) Bull. Amer. Meteor. Soc. , vol.74 , pp. 2317-2330
    • Toth, Z.1    Kalnay, E.2
  • 46
    • 0010256321 scopus 로고    scopus 로고
    • Statistical pattern recognition for labeling solar active regions: Application to SoHO/MDI imagery
    • Turmon, M., J. Pap, and S. Mukhtar, 2002: Statistical pattern recognition for labeling solar active regions: Application to SoHO/MDI imagery. Astrophys. J., 568, 396-407.
    • (2002) Astrophys. J. , vol.568 , pp. 396-407
    • Turmon, M.1    Pap, J.2    Mukhtar, S.3
  • 47
    • 0142010030 scopus 로고    scopus 로고
    • A variance-minimizing filter for large-scale applications
    • van Leeuwen, P. J., 2003: A variance-minimizing filter for large-scale applications. Mon. Wea. Rev., 131, 2071-2084.
    • (2003) Mon. Wea. Rev. , vol.131 , pp. 2071-2084
    • van Leeuwen, P.J.1
  • 48
    • 0000261492 scopus 로고    scopus 로고
    • Data assimilation and inverse methods in terms of a probabilistic formulation
    • van Leeuwen, P. J., and G. Evensen, 1996: Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Wea. Rev., 124, 2898-2913.
    • (1996) Mon. Wea. Rev. , vol.124 , pp. 2898-2913
    • van Leeuwen, P.J.1    Evensen, G.2
  • 49
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913-1924.
    • (2002) Mon. Wea. Rev. , vol.130 , pp. 1913-1924
    • Whitaker, J.S.1    Hamill, T.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.