-
1
-
-
23744460629
-
Accelerated Monte Carlo for optimal estimation of time series
-
Alexander, F. J., G. L. Eyink, and J. M. Restrepo, 2005: Accelerated Monte Carlo for optimal estimation of time series. J. Stat. Phys., 119, 1331-1345.
-
(2005)
J. Stat. Phys.
, vol.119
, pp. 1331-1345
-
-
Alexander, F.J.1
Eyink, G.L.2
Restrepo, J.M.3
-
2
-
-
0033500692
-
A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts
-
Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741-2758.
-
(1999)
Mon. Wea. Rev.
, vol.127
, pp. 2741-2758
-
-
Anderson, J.L.1
Anderson, S.L.2
-
3
-
-
0020934023
-
A stochastic-dynamic model for the spatial structure of forecast error statistics
-
Balgovind, R., A. Dalcher, M. Ghil, and E. Kalnay, 1983: A stochastic-dynamic model for the spatial structure of forecast error statistics. Mon. Wea. Rev., 111, 701-722.
-
(1983)
Mon. Wea. Rev.
, vol.111
, pp. 701-722
-
-
Balgovind, R.1
Dalcher, A.2
Ghil, M.3
Kalnay, E.4
-
4
-
-
1642360010
-
Toward a nonlinear ensemble filter for high-dimensional systems
-
doi:10.1029/2002JD002900
-
Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res., 108, 8775, doi:10.1029/2002JD002900.
-
(2003)
J. Geophys. Res.
, vol.108
, pp. 8775
-
-
Bengtsson, T.1
Snyder, C.2
Nychka, D.3
-
6
-
-
0032439201
-
Analysis scheme in the ensemble Kalman filter
-
Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719-1724.
-
(1998)
Mon. Wea. Rev.
, vol.126
, pp. 1719-1724
-
-
Burgers, G.1
van Leeuwen, P.J.2
Evensen, G.3
-
7
-
-
0001696802
-
A fixed-lag Kalman smoother for retrospective data assimilation
-
Cohn, S. E., N. S. Sivakumaran, and R. Todling, 1994: A fixed-lag Kalman smoother for retrospective data assimilation. Mon. Wea. Rev., 122, 2838-2867.
-
(1994)
Mon. Wea. Rev.
, vol.122
, pp. 2838-2867
-
-
Cohn, S.E.1
Sivakumaran, N.S.2
Todling, R.3
-
8
-
-
0001821084
-
Particle filters - A theoretical perspective
-
A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer
-
Crisan, D., 2001: Particle filters - A theoretical perspective. Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer, 17-41.
-
(2001)
Sequential Monte Carlo Methods in Practice
, pp. 17-41
-
-
Crisan, D.1
-
10
-
-
0001460136
-
On sequential Monte Carlo sampling methods for Bayesian filtering
-
Doucet, A., S. J. Godsill, and C. Andrieu, 2000: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput., 10, 197-208.
-
(2000)
Stat. Comput.
, vol.10
, pp. 197-208
-
-
Doucet, A.1
Godsill, S.J.2
Andrieu, C.3
-
11
-
-
0003665481
-
-
Doucet, A., N. de Freitas, and N. Gordon, Eds., Springer-Verlag
-
Doucet, A., N. de Freitas, and N. Gordon, Eds., 2001: Sequential Monte Carlo Methods in Practice. Springer-Verlag, 581 pp.
-
(2001)
Sequential Monte Carlo Methods in Practice
, pp. 581
-
-
-
12
-
-
0031464889
-
Optimal prediction of forecast error covariances through singular vectors
-
Ehrendorfer, M., and J. J. Tribbia, 1997: Optimal prediction of forecast error covariances through singular vectors. J. Atmos. Sci., 54, 286-313.
-
(1997)
J. Atmos. Sci.
, vol.54
, pp. 286-313
-
-
Ehrendorfer, M.1
Tribbia, J.J.2
-
13
-
-
0031400136
-
What is an adjoint model?
-
Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 2557-2591.
-
(1997)
Bull. Amer. Meteor. Soc.
, vol.78
, pp. 2557-2591
-
-
Errico, R.M.1
-
14
-
-
0028193070
-
Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics
-
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 143-10 162.
-
(1994)
J. Geophys. Res.
, vol.99
, pp. 10143-10162
-
-
Evensen, G.1
-
15
-
-
84884550570
-
The Ensemble Kalman Filter: Theoretical formulation and practical implementation
-
Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343-367.
-
(2003)
Ocean Dyn.
, vol.53
, pp. 343-367
-
-
Evensen, G.1
-
16
-
-
0033942436
-
An ensemble Kalman smoother for nonlinear dynamics
-
Evensen, G., and P. J. van Leeuwen, 2000: An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 128, 1852-1867.
-
(2000)
Mon. Wea. Rev.
, vol.128
, pp. 1852-1867
-
-
Evensen, G.1
van Leeuwen, P.J.2
-
17
-
-
0034287911
-
Most probable histories for nonlinear dynamics: Tracking climate transitions
-
Eyink, G. L., and J. M. Restrepo, 2000: Most probable histories for nonlinear dynamics: Tracking climate transitions. J. Stat. Phys., 101, 459-472.
-
(2000)
J. Stat. Phys.
, vol.101
, pp. 459-472
-
-
Eyink, G.L.1
Restrepo, J.M.2
-
19
-
-
0001198970
-
Advances in sequential estimation for atmospheric and oceanic flows
-
Ghil, M., 1997: Advances in sequential estimation for atmospheric and oceanic flows. J. Meteor. Soc. Japan, 75, 289-304.
-
(1997)
J. Meteor. Soc. Japan
, vol.75
, pp. 289-304
-
-
Ghil, M.1
-
20
-
-
0002517089
-
Introducing Markov chain Monte Carlo
-
W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds., Chapman and Hall
-
Gilks, W. R., S. Richardson, and D. J. Spiegelhalter, 1996: Introducing Markov chain Monte Carlo. Markov Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds., Chapman and Hall, 1-19.
-
(1996)
Markov Chain Monte Carlo in Practice
, pp. 1-19
-
-
Gilks, W.R.1
Richardson, S.2
Spiegelhalter, D.J.3
-
21
-
-
0008782869
-
Improvement strategies for Monte Carlo particle filters
-
A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer-Verlag
-
Godsill, S. J., and T. Clapp, 2001: Improvement strategies for Monte Carlo particle filters. Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer-Verlag, 139-158.
-
(2001)
Sequential Monte Carlo Methods in Practice
, pp. 139-158
-
-
Godsill, S.J.1
Clapp, T.2
-
22
-
-
2142848605
-
Monte Carlo smoothing for nonlinear time series
-
Godsill, S. J., A. Doucet, and M. West, 2004: Monte Carlo smoothing for nonlinear time series. J. Amer. Stat. Assoc., 99, 156-168.
-
(2004)
J. Amer. Stat. Assoc.
, vol.99
, pp. 156-168
-
-
Godsill, S.J.1
Doucet, A.2
West, M.3
-
23
-
-
3543035224
-
Markov chain Monte Carlo methods for high dimensional inversion in remote sensing
-
Haario, H., M. Laine, M. Lehtinen, E. Saksman, and J. Tamminen, 2004: Markov chain Monte Carlo methods for high dimensional inversion in remote sensing. J. Roy. Stat. Soc., 66B, 591-607.
-
(2004)
J. Roy. Stat. Soc.
, vol.66 B
, pp. 591-607
-
-
Haario, H.1
Laine, M.2
Lehtinen, M.3
Saksman, E.4
Tamminen, J.5
-
24
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings, W. K., 1970: Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
25
-
-
0032024819
-
Data assimilation using an ensemble Kalman filter technique
-
Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796-811.
-
(1998)
Mon. Wea. Rev.
, vol.126
, pp. 796-811
-
-
Houtekamer, P.L.1
Mitchell, H.L.2
-
26
-
-
0032221057
-
Monte Carlo approximations for general state space models
-
Hürzeler, M., and H. R. Künsch, 1998: Monte Carlo approximations for general state space models. J. Comput. Graph. Stat., 7, 175-193.
-
(1998)
J. Comput. Graph. Stat.
, vol.7
, pp. 175-193
-
-
Hürzeler, M.1
Künsch, H.R.2
-
29
-
-
0036965503
-
Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model
-
Keppenne, C. L., and M. M. Rienecker, 2002: Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model. Mon. Wea. Rev., 130, 2951-2965.
-
(2002)
Mon. Wea. Rev.
, vol.130
, pp. 2951-2965
-
-
Keppenne, C.L.1
Rienecker, M.M.2
-
30
-
-
0348013345
-
Ensemble filtering for nonlinear dynamics
-
Kim, S., G. L. Eyink, J. M. Restrepo, F. J. Alexander, and G. Johnson, 2003: Ensemble filtering for nonlinear dynamics. Mon. Wea. Rev., 131, 2586-2594.
-
(2003)
Mon. Wea. Rev.
, vol.131
, pp. 2586-2594
-
-
Kim, S.1
Eyink, G.L.2
Restrepo, J.M.3
Alexander, F.J.4
Johnson, G.5
-
31
-
-
0030304310
-
Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
-
Kitagawa, G., 1996: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat., 5, 1-25.
-
(1996)
J. Comput. Graph. Stat.
, vol.5
, pp. 1-25
-
-
Kitagawa, G.1
-
32
-
-
4444303259
-
Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth
-
Lawson, W. G., and J. A. Hansen, 2004: Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth. Mon. Wea. Rev., 132, 1966-1981.
-
(2004)
Mon. Wea. Rev.
, vol.132
, pp. 1966-1981
-
-
Lawson, W.G.1
Hansen, J.A.2
-
33
-
-
0032359151
-
Sequential Monte Carlo methods for dynamic systems
-
Liu, J. S., and R. Chen, 1998: Sequential Monte Carlo methods for dynamic systems. J. Amer. Stat. Assoc., 93, 1032-1044.
-
(1998)
J. Amer. Stat. Assoc.
, vol.93
, pp. 1032-1044
-
-
Liu, J.S.1
Chen, R.2
-
34
-
-
0000241853
-
Deterministic nonperiodic flow
-
Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141.
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
36
-
-
5744249209
-
Equation of state calculations by fast computing machines
-
Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, 1953: Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 1087-1092.
-
(1953)
J. Chem. Phys.
, vol.21
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
37
-
-
0036734546
-
Ensemble generation for models of multimodel systems
-
Miller, R. N., and L. L. Ehret, 2002: Ensemble generation for models of multimodel systems. Mon. Wea. Rev., 130, 2313-2333.
-
(2002)
Mon. Wea. Rev.
, vol.130
, pp. 2313-2333
-
-
Miller, R.N.1
Ehret, L.L.2
-
38
-
-
0028554556
-
Advanced data assimilation in strongly nonlinear dynamical systems
-
Miller, R. N., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51, 1037-1056.
-
(1994)
J. Atmos. Sci.
, vol.51
, pp. 1037-1056
-
-
Miller, R.N.1
Ghil, M.2
Gauthiez, F.3
-
39
-
-
0032764305
-
Data assimilation into nonlinear stochastic models
-
Miller, R. N., E. F. Carter, and S. T. Blue, 1999: Data assimilation into nonlinear stochastic models. Tellus, 51A, 167-194.
-
(1999)
Tellus
, vol.51 A
, pp. 167-194
-
-
Miller, R.N.1
Carter, E.F.2
Blue, S.T.3
-
40
-
-
0029753275
-
The ECMWF ensemble prediction system: Methodology and validation
-
Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73-119.
-
(1996)
Quart. J. Roy. Meteor. Soc.
, vol.122
, pp. 73-119
-
-
Molteni, F.1
Buizza, R.2
Palmer, T.N.3
Petroliagis, T.4
-
41
-
-
8844258829
-
A local ensemble Kalman filter for atmospheric data assimilation
-
Coauthors
-
Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415-428.
-
(2004)
Tellus
, vol.56 A
, pp. 415-428
-
-
Ott, E.1
-
42
-
-
0035335074
-
Stochastic methods for sequential data assimilation in strongly nonlinear systems
-
Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129, 1194-1207.
-
(2001)
Mon. Wea. Rev.
, vol.129
, pp. 1194-1207
-
-
Pham, D.T.1
-
44
-
-
0001789959
-
Introduction to general state-space Markov chain theory
-
W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds., Chapman and Hall
-
Tierney, L., 1996: Introduction to general state-space Markov chain theory. Markov Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds., Chapman and Hall, 59-74.
-
(1996)
Markov Chain Monte Carlo in Practice
, pp. 59-74
-
-
Tierney, L.1
-
45
-
-
0001509508
-
Ensemble forecasting at NMC: The generation of perturbations
-
Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317-2330.
-
(1993)
Bull. Amer. Meteor. Soc.
, vol.74
, pp. 2317-2330
-
-
Toth, Z.1
Kalnay, E.2
-
46
-
-
0010256321
-
Statistical pattern recognition for labeling solar active regions: Application to SoHO/MDI imagery
-
Turmon, M., J. Pap, and S. Mukhtar, 2002: Statistical pattern recognition for labeling solar active regions: Application to SoHO/MDI imagery. Astrophys. J., 568, 396-407.
-
(2002)
Astrophys. J.
, vol.568
, pp. 396-407
-
-
Turmon, M.1
Pap, J.2
Mukhtar, S.3
-
47
-
-
0142010030
-
A variance-minimizing filter for large-scale applications
-
van Leeuwen, P. J., 2003: A variance-minimizing filter for large-scale applications. Mon. Wea. Rev., 131, 2071-2084.
-
(2003)
Mon. Wea. Rev.
, vol.131
, pp. 2071-2084
-
-
van Leeuwen, P.J.1
-
48
-
-
0000261492
-
Data assimilation and inverse methods in terms of a probabilistic formulation
-
van Leeuwen, P. J., and G. Evensen, 1996: Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Wea. Rev., 124, 2898-2913.
-
(1996)
Mon. Wea. Rev.
, vol.124
, pp. 2898-2913
-
-
van Leeuwen, P.J.1
Evensen, G.2
-
49
-
-
0036646009
-
Ensemble data assimilation without perturbed observations
-
Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913-1924.
-
(2002)
Mon. Wea. Rev.
, vol.130
, pp. 1913-1924
-
-
Whitaker, J.S.1
Hamill, T.M.2
|