-
1
-
-
84863136881
-
k - p fractional factorial designs I and II
-
k - p fractional factorial designs I and II. Technometrics 3 (1961) 311-351
-
(1961)
Technometrics
, vol.3
, pp. 311-351
-
-
Box, G.E.P.1
Hunter, J.S.2
-
2
-
-
0001264052
-
Projective properties of certain orthogonal arrays
-
Box G.E.P., and Tyssedal J. Projective properties of certain orthogonal arrays. Biometrika 83 (1996) 950-955
-
(1996)
Biometrika
, vol.83
, pp. 950-955
-
-
Box, G.E.P.1
Tyssedal, J.2
-
3
-
-
1542639562
-
Minimum aberration construction results for nonregular two-level fractional factorial designs
-
Butler N.A. Minimum aberration construction results for nonregular two-level fractional factorial designs. Biometrika 90 (2003) 891-898
-
(2003)
Biometrika
, vol.90
, pp. 891-898
-
-
Butler, N.A.1
-
4
-
-
1542404004
-
2-aberration properties of two level foldover designs
-
2-aberration properties of two level foldover designs. Statistics and Probability Letters 67 (2004) 121-132
-
(2004)
Statistics and Probability Letters
, vol.67
, pp. 121-132
-
-
Butler, N.A.1
-
5
-
-
13344270883
-
Classification of efficient two-level fractional factorial design of resolution IV or more
-
Butler N.A. Classification of efficient two-level fractional factorial design of resolution IV or more. Journal of Statistical Planning and Inference 131 (2005) 145-159
-
(2005)
Journal of Statistical Planning and Inference
, vol.131
, pp. 145-159
-
-
Butler, N.A.1
-
6
-
-
0009922346
-
n - m designs with resolution III or IV containing clear two-factor interactions
-
n - m designs with resolution III or IV containing clear two-factor interactions. J. Statist. Plann. Inference 75 (1998) 147-158
-
(1998)
J. Statist. Plann. Inference
, vol.75
, pp. 147-158
-
-
Chen, H.1
Hedayat, A.S.2
-
7
-
-
33845805462
-
A catalogue of two-level and three-level fractional factorial designs with small runs
-
Chen J., Sun D.X., and Wu C.F.J. A catalogue of two-level and three-level fractional factorial designs with small runs. International Statistical Review 86 (1993) 953-963
-
(1993)
International Statistical Review
, vol.86
, pp. 953-963
-
-
Chen, J.1
Sun, D.X.2
Wu, C.F.J.3
-
8
-
-
21844526342
-
Some projection properties of orthogonal array
-
Cheng C.S. Some projection properties of orthogonal array. Ann. Statist. 23 (1995) 1223-1233
-
(1995)
Ann. Statist.
, vol.23
, pp. 1223-1233
-
-
Cheng, C.S.1
-
9
-
-
1542535077
-
Some hidden projection properties of orthogonal array with strength three
-
Cheng C.S. Some hidden projection properties of orthogonal array with strength three. Biometrika 85 (1998) 491-495
-
(1998)
Biometrika
, vol.85
, pp. 491-495
-
-
Cheng, C.S.1
-
10
-
-
22844456462
-
Generalized resolution and minimum aberration criteria for Plackett-Burman and other nonregular factorial designs
-
Deng L.Y., and Tang B. Generalized resolution and minimum aberration criteria for Plackett-Burman and other nonregular factorial designs. Statist. Sinica 9 (1999) 1071-1082
-
(1999)
Statist. Sinica
, vol.9
, pp. 1071-1082
-
-
Deng, L.Y.1
Tang, B.2
-
11
-
-
0036567171
-
Design selection and classification for Hadamard matrices using generalized minimum aberration criteria
-
Deng L.Y., and Tang B. Design selection and classification for Hadamard matrices using generalized minimum aberration criteria. Technometrics 44 (2002) 173-184
-
(2002)
Technometrics
, vol.44
, pp. 173-184
-
-
Deng, L.Y.1
Tang, B.2
-
14
-
-
0000768509
-
Projection properties of Plackett and Burman designs
-
Lin D.K.J., and Draper N.R. Projection properties of Plackett and Burman designs. Technometrics 34 (1992) 423-428
-
(1992)
Technometrics
, vol.34
, pp. 423-428
-
-
Lin, D.K.J.1
Draper, N.R.2
-
15
-
-
0035648164
-
A note on generalized aberration in factorial designs
-
Ma C.X., and Fang K.T. A note on generalized aberration in factorial designs. Metrika 53 (2001) 85-93
-
(2001)
Metrika
, vol.53
, pp. 85-93
-
-
Ma, C.X.1
Fang, K.T.2
-
16
-
-
0033234632
-
2-aberration for nonregular fractional factorial designs
-
2-aberration for nonregular fractional factorial designs. Ann. Statist. 27 (1999) 1914-1926
-
(1999)
Ann. Statist.
, vol.27
, pp. 1914-1926
-
-
Tang, B.1
Deng, L.Y.2
-
17
-
-
0037387563
-
Construction of generalized minimum aberration designs of 3, 4 and 5 factors
-
Tang B., and Deng L.Y. Construction of generalized minimum aberration designs of 3, 4 and 5 factors. J. Statist. Plann. Inference 113 (2003) 335-340
-
(2003)
J. Statist. Plann. Inference
, vol.113
, pp. 335-340
-
-
Tang, B.1
Deng, L.Y.2
-
19
-
-
0001698286
-
A hidden projection property of Plackett and Burman and related designs
-
Wang J.C., and Wu C.F.J. A hidden projection property of Plackett and Burman and related designs. Statist. Sinica 5 (1995) 235-250
-
(1995)
Statist. Sinica
, vol.5
, pp. 235-250
-
-
Wang, J.C.1
Wu, C.F.J.2
-
20
-
-
0000004811
-
A graph-aided method for planning two-level experiments when certain interactions are important
-
Wu C.F.J., and Chen Y. A graph-aided method for planning two-level experiments when certain interactions are important. Technometrics 34 (1992) 162-175
-
(1992)
Technometrics
, vol.34
, pp. 162-175
-
-
Wu, C.F.J.1
Chen, Y.2
-
21
-
-
0036432456
-
Clear two-factor interactions and minimum aberration
-
Wu H.Q., and Wu C.F.J. Clear two-factor interactions and minimum aberration. Ann. Statist. 30 (2002) 1496-1511
-
(2002)
Ann. Statist.
, vol.30
, pp. 1496-1511
-
-
Wu, H.Q.1
Wu, C.F.J.2
-
22
-
-
21644439530
-
Some nonregular designs from the Nordstrom and Robinson code and their statistical properties
-
Xu H. Some nonregular designs from the Nordstrom and Robinson code and their statistical properties. Biometrika 92 (2005) 385-397
-
(2005)
Biometrika
, vol.92
, pp. 385-397
-
-
Xu, H.1
-
23
-
-
0035629660
-
Generalized minimum aberration for asymmetrical fractional factorial designs
-
Xu H., and Wu C.F.J. Generalized minimum aberration for asymmetrical fractional factorial designs. Ann. Statist. 29 (2001) 1066-1077
-
(2001)
Ann. Statist.
, vol.29
, pp. 1066-1077
-
-
Xu, H.1
Wu, C.F.J.2
-
24
-
-
33846157793
-
-
m - (m - k) designs containing maximum number of clear two-factor interactions, submitted for publication.
-
-
-
|