메뉴 건너뛰기




Volumn 22, Issue 25, 2006, Pages 10666-10682

Adaptive finite element methods in electrochemistry

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; CURRENT DENSITY; ELECTRIC CURRENTS; FINITE ELEMENT METHOD; INSULATING MATERIALS; MICROELECTRODES; PROBLEM SOLVING;

EID: 33845988040     PISSN: 07437463     EISSN: None     Source Type: Journal    
DOI: 10.1021/la061158l     Document Type: Article
Times cited : (14)

References (83)
  • 1
    • 33846009774 scopus 로고    scopus 로고
    • Alden, J. A. D. Phil. Thesis, University of Oxford, Oxford, U.K., 1998.
    • Alden, J. A. D. Phil. Thesis, University of Oxford, Oxford, U.K., 1998.
  • 49
    • 33846006868 scopus 로고    scopus 로고
    • Østerby, O. Technical Report DAIMI PB-534, Department of Computer Science, University of Aarhus, Ny Munkegade, Bldg. 540, DK-8000 Aarhus C, Denmark, 1998.
    • Østerby, O. Technical Report DAIMI PB-534, Department of Computer Science, University of Aarhus, Ny Munkegade, Bldg. 540, DK-8000 Aarhus C, Denmark, 1998.
  • 55
    • 33846031914 scopus 로고    scopus 로고
    • Fisher, A. C. Electrode Dynamics; Oxford Chemistry Primers, No. 34; Oxford University Press: Oxford, U.K., 1996.
    • Fisher, A. C. Electrode Dynamics; Oxford Chemistry Primers, No. 34; Oxford University Press: Oxford, U.K., 1996.
  • 56
    • 0020259662 scopus 로고
    • Gallagher, R. H, Norrie, D. H, Oden, J. T, Zienkiewicz, O. C, Eds, John Wiley & Sons: Chichester, U.K
    • Hughes, T. J. R.; Brooks, A. In Finite Elements in Fluids; Gallagher, R. H., Norrie, D. H., Oden, J. T., Zienkiewicz, O. C., Eds.; John Wiley & Sons: Chichester, U.K., 1982; Vol. 4, p 47.
    • (1982) Finite Elements in Fluids , vol.4 , pp. 47
    • Hughes, T.J.R.1    Brooks, A.2
  • 64
    • 33845974856 scopus 로고    scopus 로고
    • NA04/19, Oxford University Computing Laboratory, Wolfson Building, Parks Road
    • Technical Report, Oxford OX 1 3QD
    • Harriman, K.; Gavaghan, D. J.; Süli, E. Technical Report NA04/19, Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX 1 3QD, 2004.
    • (2004)
    • Harriman, K.1    Gavaghan, D.J.2    Süli, E.3
  • 68
    • 33845988344 scopus 로고    scopus 로고
    • NA97/11, Oxford University Computing Laboratory, Wolfson Building, Parks Road
    • Technical Report, Oxford, OX1 3QD
    • Giles, M.; Technical Report NA97/11, Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, 1997.
    • (1997)
    • Giles, M.1
  • 80
    • 0000616562 scopus 로고    scopus 로고
    • Block, H. G, Brezzi, F, Glowinski, R, Kanschat, G, Kuznetsov, Y. A, Pénaux, J, Rannacher, R, Eds, World Scientific Publishing: Singapore
    • Becker, R.; Rannacher, R. In: ENUMATH-97; Block, H. G., Brezzi, F., Glowinski, R., Kanschat, G., Kuznetsov, Y. A., Pénaux, J., Rannacher, R., Eds.; World Scientific Publishing: Singapore, 1998; p 621.
    • (1998) ENUMATH-97 , pp. 621
    • Becker, R.1    Rannacher, R.2
  • 83
    • 33846012845 scopus 로고    scopus 로고
    • The standard approach to error analysis that is widely reported in the electrochemical literature is to calculate a priori error bounds for finite difference methods. In general, this form of error analysis involves expanding the exact solution at a point as a Taylor series in powers of the mesh spacing on a regular mesh. Substitution of this expansion into the finite difference approximation provides a bound for the error in terms of powers of the mesh spacing and higher-order derivatives of the exact solution. For problems where the solution is smooth, this allows an approximation to the error in the problem to be obtained by repeatedly solving the problem on finer meshes, typically with the mesh spacing halved between successive meshes, which also allows the use of extrapolation methods such as Richardson extrapolation, A technical report exploring this approach has been provided by Østerby.49 The drawbacks of this approach are twofold. First, it does not give a
    • 49 The drawbacks of this approach are twofold. First, it does not give a computable bound on the error because it is not in general possible to place tight bounds on the higher-order derivatives of the exact solution; the error can be approximated only indirectly from successive solutions. Second, the technique relies on the existence of a Taylor expansion of the exact solution at all points in the solution region and therefore breaks down for most 2D electrochemical problems because of the presence of boundary singularities at the electrode edge. (See ref 50 for a more detailed explanation.)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.