메뉴 건너뛰기




Volumn 7, Issue , 2006, Pages

A hierarchical Naïve Bayes model for handling sample heterogeneity in classification problems: An application to tissue microarrays

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN HIERARCHICAL MODEL; CLASSIFICATION ACCURACY; CLASSIFICATION EQUATIONS; CLASSIFICATION MODELS; COMPUTATIONAL COSTS; MULTIPLE MEASUREMENTS; PROBABILISTIC FRAMEWORK; PROSTATE CANCER DATASET;

EID: 33845660791     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-7-514     Document Type: Article
Times cited : (60)

References (39)
  • 1
    • 10944272498 scopus 로고    scopus 로고
    • Prospective evaluation of AMACR (P504S) and basal cell markers in the assessment of routine prostate needle biopsy specimens
    • Browne TJ, Hirsch MS, Brodsky G, Welch WR, Loda MF, Rubin MA: Prospective evaluation of AMACR (P504S) and basal cell markers in the assessment of routine prostate needle biopsy specimens. Hum Pathol 2004, 35(12):1462-1468.
    • (2004) Hum Pathol , vol.35 , Issue.12 , pp. 1462-1468
    • Browne, T.J.1    Hirsch, M.S.2    Brodsky, G.3    Welch, W.R.4    Loda, M.F.5    Rubin, M.A.6
  • 2
    • 0038077396 scopus 로고    scopus 로고
    • Evaluation of HER-2/neu oncogene status in breast tumors on tissue microarrays
    • Zhang D, Salto-Tellez M, Do E, Putti TC, Koay ES: Evaluation of HER-2/ neu oncogene status in breast tumors on tissue microarrays. Hum Pathal 2003, 34(4):362-368.
    • (2003) Hum Pathol , vol.34 , Issue.4 , pp. 362-368
    • Zhang, D.1    Salto-Tellez, M.2    Do, E.3    Putti, T.C.4    Koay, E.S.5
  • 5
    • 0032255089 scopus 로고    scopus 로고
    • Intelligent data analysis for medical diagnosis: Using machine learning and temporal abstraction
    • Lavrac N: Intelligent data analysis for medical diagnosis: using machine learning and temporal abstraction. AI Communications 1998, 11:191-218.
    • (1998) AI Communications , vol.11 , pp. 191-218
    • Lavrac, N.1
  • 6
    • 84867754892 scopus 로고    scopus 로고
    • Learning Patterns in Noisy Data: The AQ Approach
    • In Edited by: Paliouras G, Karkaletsis V, Spyropoulos C. Berlin, Springer-Verlar
    • Michalski RS, Kaufman K: Learning Patterns in Noisy Data: The AQ Approach. In Machine Learning and its Applications Edited by: Paliouras G, Karkaletsis V, Spyropoulos C. Berlin, Springer-Verlar, 2001:22-38.
    • (2001) Machine Learning and Its Applications , pp. 22-38
    • Michalski, R.S.1    Kaufman, K.2
  • 8
    • 4043059734 scopus 로고    scopus 로고
    • A Bayesian network classification methodology for gene expression data
    • Helman P, Veroff R, Atlas SR, Willman C: A Bayesian network classification methodology for gene expression data. J Comput Biol 2004,11(4):581-615.
    • (2004) J Comput Biol , vol.11 , Issue.4 , pp. 581-615
    • Helman, P.1    Veroff, R.2    Atlas, S.R.3    Willman, C.4
  • 9
    • 20044395334 scopus 로고    scopus 로고
    • Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data
    • Shen R, Ghosh D, Chinnaiyan AM: Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data. BMC Genomics 2004, 5(1):94.
    • (2004) BMC Genomics , vol.5 , Issue.1 , pp. 94
    • Shen, R.1    Ghosh, D.2    Chinnaiyan, A.M.3
  • 10
    • 13244255412 scopus 로고    scopus 로고
    • A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals
    • Karklin Y, Lewicki MS. A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals. Neural Comput 2005, 17(2):397-423.
    • (2005) Neural Comput , vol.17 , Issue.2 , pp. 397-423
    • Karklin, Y.1    Lewicki, M.S.2
  • 11
    • 0038505133 scopus 로고    scopus 로고
    • Nonparametric AUC estimation in population studies with incomplete sampling: A Bayesian approach
    • Magni P, Bellazzi R, De Nicolao G, Poggesi I, Rocchetti M: Nonparametric AUC estimation in population studies with incomplete sampling: a Bayesian approach. J Pharmacokinet Pharmacodyn 2002, 29(5-6):445-471.
    • (2002) J Pharmacokinet Pharmacodyn , vol.29 , Issue.5-6 , pp. 445-471
    • Magni, P.1    Bellazzi, R.2    De Nicolao, G.3    Poggesi, I.4    Rocchetti, M.5
  • 12
    • 15544385226 scopus 로고    scopus 로고
    • A hierarchical Binomial-Poisson model for the analysis of a crossover design for correlated binary data when the number of trials is dose-dependent
    • Shkedy Z, Molenberghs G, Van Craenendonck H, Steckler T, Bijnens L. A hierarchical Binomial-Poisson model for the analysis of a crossover design for correlated binary data when the number of trials is dose-dependent. J Biopharm Stat 2005, 15(2):225-239.
    • (2005) J Biopharm Stat , vol.15 , Issue.2 , pp. 225-239
    • Shkedy, Z.1    Molenberghs, G.2    Van Craenendonck, H.3    Steckler, T.4    Bijnens, L.5
  • 13
    • 12344304266 scopus 로고    scopus 로고
    • Gene selection using a two-level hierarchical Bayesian model
    • Bae K, Mallick BK: Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 2004, 20(18):3423-3430.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3423-3430
    • Bae, K.1    Mallick, B.K.2
  • 14
    • 4544318151 scopus 로고    scopus 로고
    • Bayesian hierarchical error model for analysis of gene expression data
    • Cho H, Lee JK: Bayesian hierarchical error model for analysis of gene expression data. Bioinformatics 2004, 20(13):2016-2025.
    • (2004) Bioinformatics , vol.20 , Issue.13 , pp. 2016-2025
    • Cho, H.1    Lee, J.K.2
  • 15
    • 28444499694 scopus 로고    scopus 로고
    • Random walk models for bayesian clustering of gene expression profiles
    • Ferrazzi F, Magni P, Bellazzi R: Random walk models for bayesian clustering of gene expression profiles. Appl Bioinformatics 2005, 4(4):263-276.
    • (2005) Appl Bioinformatics , vol.4 , Issue.4 , pp. 263-276
    • Ferrazzi, F.1    Magni, P.2    Bellazzi, R.3
  • 16
    • 24644473482 scopus 로고    scopus 로고
    • BGX: A fully Bayesian integrated approach to the analysis of Affymetrix GeneChip data
    • Hein AM, Richardson S, Causton HC, Ambler GK, Green PJ: BGX: a fully Bayesian Integrated approach to the analysis of Affymetrix GeneChip data. Biostatistics 2005, 6(3):349-373.
    • (2005) Biostatistics , vol.6 , Issue.3 , pp. 349-373
    • Hein, A.M.1    Richardson, S.2    Causton, H.C.3    Ambler, G.K.4    Green, P.J.5
  • 17
    • 0037110566 scopus 로고    scopus 로고
    • Multilevel modelling of medical data
    • Goldstein H, Browne W, Rasbash J: Multilevel modelling of medical data. Stat Med 200, 21(21):3291-3315.
    • (2000) Stat Med , vol.21 , Issue.21 , pp. 3291-3315
    • Goldstein, H.1    Browne, W.2    Rasbash, J.3
  • 19
    • 33745444617 scopus 로고    scopus 로고
    • Classification using Hierarchical Naive Bayes models
    • Langseth H, Nielsen TD: Classification using Hierarchical Naive Bayes models. Machine Learning 2006, 63:135-159.
    • (2006) Machine Learning , vol.63 , pp. 135-159
    • Langseth, H.1    Nielsen, T.D.2
  • 20
    • 0026009302 scopus 로고
    • Assessing predictive accuracy: How to compare Brier scores
    • Redelmeier DA, Bloch DA, Hickam DH: Assessing predictive accuracy: how to compare Brier scores. J Clin Epidemiol 1991, 44(11):1141-1146.
    • (1991) J Clin Epidemiol , vol.44 , Issue.11 , pp. 1141-1146
    • Redelmeier, D.A.1    Bloch, D.A.2    Hickam, D.H.3
  • 21
  • 25
    • 0036682376 scopus 로고    scopus 로고
    • Meta-analysis of microarrays: Interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer
    • Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM: Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res 2002, 62(15):4427-4433.
    • (2002) Cancer Res , vol.62 , Issue.15 , pp. 4427-4433
    • Rhodes, D.R.1    Barrette, T.R.2    Rubin, M.A.3    Ghosh, D.4    Chinnaiyan, A.M.5
  • 30
    • 0027595614 scopus 로고
    • Neural Networks that Learn from Fuzzy If-Then Rules
    • Ishibuchi H, al.: Neural Networks that learn from Fuzzy If-Then rules. IEEE Trans Fuzzy Systems 1993, 1(2):85-97.
    • (1993) IEEE Trans Fuzzy Systems , vol.1 , Issue.2 , pp. 85-97
    • Ishibuchi, H.1
  • 31
    • 19544362938 scopus 로고    scopus 로고
    • Bayesian model averaging: Development of an improved multl-class, gene selection and classification tool for microarray data
    • Yeung KY, Bumgarner RE, Raftery AE: Sayesian model averaging: development of an improved multl-class, gene selection and classification tool for microarray data. Bioinformatics 2005, 21(10):2394-2402.
    • (2005) Bioinformatics , vol.21 , Issue.10 , pp. 2394-2402
    • Yeung, K.Y.1    Bumgarner, R.E.2    Raftery, A.E.3
  • 32
    • 12844250126 scopus 로고    scopus 로고
    • Robust sparse hyperplane classifiers: Application to uncertain molecular profiling data
    • Bhattacharyya C, Grate LR, Jordan MI, El Ghaoui L, Mian IS. Robust sparse hyperplane classifiers: application to uncertain molecular profiling data. J Comput Biol 2004, 11(6):1073-1089.
    • (2004) J Comput Biol , vol.11 , Issue.6 , pp. 1073-1089
    • Bhattacharyya, C.1    Grate, L.R.2    Jordan, M.I.3    El Ghaoui, L.4    Mian, I.S.5
  • 34
    • 33845682378 scopus 로고    scopus 로고
    • Hierarchical Naive Bayes Classifiers for uncertain data
    • Pavia, I Laboratory for Biomedical Informatics, University of Pavia
    • Bellazzi R, Demichelis F, Piergiorgi P, Magni P: Hierarchical Naive Bayes Classifiers for uncertain data. In DIS Technical Report Pavia, I, Laboratory for Biomedical Informatics, University of Pavia; 2006.
    • (2006) DIS Technical Report
    • Bellazzi, R.1    Demichelis, F.2    Piergiorgi, P.3    Magni, P.4
  • 35
    • 0030200712 scopus 로고    scopus 로고
    • Learning temporal probabilistic causal models from longitudinal data
    • Riva A, Bellazzi R: Learning temporal probabilistic causal models from longitudinal data. Artif Intefl Med 1996, 8(3):217-234.
    • (1996) Artif Intefl Med , vol.8 , Issue.3 , pp. 217-234
    • Riva, A.1    Bellazzi, R.2
  • 37
    • 0034812398 scopus 로고    scopus 로고
    • Tissue microarray (TMA) technology: Miniaturized pathology archives for high-throughput in situ studies
    • Bubendorf L, Nocito A, Moch H, Sauter G: Tissue microarray (TMA) technology: miniaturized pathology archives for high-throughput in situ studies. J Pathol 2001, 195(1):72-79.
    • (2001) J Pathol , vol.195 , Issue.1 , pp. 72-79
    • Bubendorf, L.1    Nocito, A.2    Moch, H.3    Sauter, G.4
  • 38
    • 0034065893 scopus 로고    scopus 로고
    • Neuroendocrine expression in metastatic prostate cancer: Evaluation of high throughput tissue microarrays to detect heterogeneous protein expression
    • Mucci NR, Akdas G, Manely S, Rubin MA: Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum Pathol 2000, 31(4):406-414.
    • (2000) Hum Pathol , vol.31 , Issue.4 , pp. 406-414
    • Mucci, N.R.1    Akdas, G.2    Manely, S.3    Rubin, M.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.