메뉴 건너뛰기




Volumn 667 LNAI, Issue , 1993, Pages 244-261

COBBIT—a control procedure for COBWEB in the presence of concept drift

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER SCIENCE; COMPUTERS;

EID: 85028802612     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-56602-3_140     Document Type: Conference Paper
Times cited : (12)

References (21)
  • 9
    • 0022849774 scopus 로고
    • Machine learning, clustering and polymorphy
    • Elsevier Science Publishers
    • Stephen José Hanson and Malcolm Bauer. Machine learning, clustering and polymorphy. In Uncertainty in artificial intelligence, pages 415-428. Elsevier Science Publishers, 1986.
    • (1986) Uncertainty in Artificial Intelligence , pp. 415-428
    • Hanson, S.J.1    Bauer, M.2
  • 10
    • 0000783818 scopus 로고
    • Conceptual clustering, categorization and polymorphy
    • Stephen José Hanson and Malcolm Bauer. Conceptual clustering, categorization and polymorphy. Machine Learning, (3):343-372, 1989.
    • (1989) Machine Learning , Issue.3 , pp. 343-372
    • Hanson, S.J.1    Bauer, M.2
  • 13
    • 85031825065 scopus 로고
    • System flora: Learning from time-varying training sets
    • Yves Kodratoff, editor, number 482 in Lecture Notes in Artificial Intelligence. Springer-Verlag
    • Miroslav Kubat and Jirina Pavlickova. System flora: Learning from time-varying training sets. In Yves Kodratoff, editor, Machine Learning—EWSL-91, number 482 in Lecture Notes in Artificial Intelligence. Springer-Verlag, 1991.
    • (1991) Machine Learning—EWSL-91
    • Kubat, M.1    Pavlickova, J.2
  • 15
    • 0000166613 scopus 로고
    • Experiments with incremental concept formation: Unimem
    • Michael Lebowitz. Experiments with incremental concept formation: Unimem. Machine Learning, (2):103-138, 1987.
    • (1987) Machine Learning , Issue.2 , pp. 103-138
    • Lebowitz, M.1
  • 16
    • 0003046842 scopus 로고
    • Stepp. Learning from observation: Conceptual clustering
    • Jaime G. Carbonell, Ryszard S. Michalski, and Tom M. Mitchell, editors, Tioga publishing company
    • Ryszard S. Michalski and Robert E. Stepp. Learning from observation: Conceptual clustering. In Jaime G. Carbonell, Ryszard S. Michalski, and Tom M. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, pages 331-363. Tioga publishing company, 1983.
    • (1983) Machine Learning: An Artificial Intelligence Approach , pp. 331-363
    • Michalski, R.S.1    Robert, E.2
  • 17
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • Jaime G. Carbonell, Ryszard S. Michalski, and Tom M. Mitchell, editors, Tioga publishing company
    • Ryszard S. Michalski and Robert E. Stepp. A theory and methodology of inductive learning. In Jaime G. Carbonell, Ryszard S. Michalski, and Tom M. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, pages 83-129. Tioga publishing company, 1983.
    • (1983) Machine Learning: An Artificial Intelligence Approach , pp. 83-129
    • Michalski, R.S.1    Stepp, R.E.2
  • 20
    • 0010012318 scopus 로고
    • Junior. Incremental learning from noisy data
    • Jeffrey Schlimmer and Richard Granger, Junior. Incremental learning from noisy data. Machine Learning, 1(3):317-354, 1986.
    • (1986) Machine Learning , vol.1 , Issue.3 , pp. 317-354
    • Schlimmer, J.1    Granger, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.