-
1
-
-
0014979468
-
Purification of intact flagella from Escherichia coli and Bacillus subtilis
-
DePamphilis, M. L., and J. Adler. 1971. Purification of intact flagella from Escherichia coli and Bacillus subtilis. J. Bacteriol. 105:376-383.
-
(1971)
J. Bacteriol.
, vol.105
, pp. 376-383
-
-
DePamphilis, M.L.1
Adler, J.2
-
2
-
-
0016345728
-
Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli
-
Larsen, S. H., R. W. Reader, E. N. Kort, W.-W. Tso, and J. Adler. 1974. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature. 249:74-77.
-
(1974)
Nature
, vol.249
, pp. 74-77
-
-
Larsen, S.H.1
Reader, R.W.2
Kort, E.N.3
Tso, W.-W.4
Adler, J.5
-
3
-
-
0017704180
-
Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force
-
Macnab, R. M., and M. K. Ornston. 1977. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol. 112:1-30.
-
(1977)
J. Mol. Biol.
, vol.112
, pp. 1-30
-
-
Macnab, R.M.1
Ornston, M.K.2
-
4
-
-
0018791734
-
Transition of bacterial flagella from helical to straight forms with different subunit arrangements
-
Kamiya, R., S. Asakura, K. Wakabayashi, and K. Namba. 1979. Transition of bacterial flagella from helical to straight forms with different subunit arrangements. J. Mol. Biol. 131:725-742.
-
(1979)
J. Mol. Biol.
, vol.131
, pp. 725-742
-
-
Kamiya, R.1
Asakura, S.2
Wakabayashi, K.3
Namba, K.4
-
5
-
-
0029039662
-
The structure of the R-type straight flagellar filament of Salmonella at 9 Å resolution by electron cryomicroscopy
-
Mimori, Y., I. Yamashita, K. Murata, Y. Fujiyoshi, K. Yonekura, C. Toyoshima, and K. Namba. 1995. The structure of the R-type straight flagellar filament of Salmonella at 9 Å resolution by electron cryomicroscopy. J. Mol. Biol. 249:69-87.
-
(1995)
J. Mol. Biol.
, vol.249
, pp. 69-87
-
-
Mimori, Y.1
Yamashita, I.2
Murata, K.3
Fujiyoshi, Y.4
Yonekura, K.5
Toyoshima, C.6
Namba, K.7
-
6
-
-
0029042213
-
Structure of bacterial flagellar filaments at 11 Å resolution: Packing of the α-helices
-
Morgan, D. G., C. Owen, L. A. Melanson, and D. J. DeRosier. 1995. Structure of bacterial flagellar filaments at 11 Å resolution: packing of the α-helices. J. Mol. Biol. 249:88-110.
-
(1995)
J. Mol. Biol.
, vol.249
, pp. 88-110
-
-
Morgan, D.G.1
Owen, C.2
Melanson, L.A.3
DeRosier, D.J.4
-
7
-
-
0035868953
-
Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling
-
Samatey, F. A., K. Imada, S. Nagashima, F. Vonderviszt, T. Kumasaka, M. Yamamoto, and K. Namba. 2001. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature. 410:331-337.
-
(2001)
Nature
, vol.410
, pp. 331-337
-
-
Samatey, F.A.1
Imada, K.2
Nagashima, S.3
Vonderviszt, F.4
Kumasaka, T.5
Yamamoto, M.6
Namba, K.7
-
8
-
-
0014889416
-
Polymerization of flagellin and polymorphism of flagella
-
Asakura, S. 1970. Polymerization of flagellin and polymorphism of flagella. Adv. Biophys. 1:99-155.
-
(1970)
Adv. Biophys.
, vol.1
, pp. 99-155
-
-
Asakura, S.1
-
9
-
-
0017841508
-
Change of waveform in bacterial flagella: The role of mechanics at the molecular level
-
Calladine, C. R. 1978. Change of waveform in bacterial flagella: the role of mechanics at the molecular level. J. Mol. Biol. 118:457-479.
-
(1978)
J. Mol. Biol.
, vol.118
, pp. 457-479
-
-
Calladine, C.R.1
-
10
-
-
2642692699
-
Structure and switching of bacterial flagellar filaments studied by x-ray fiber diffraction
-
Yamashita, I., K. Hasegawa, H. Suzuki, F. Vonderviszt, Y. Mimori-Kiyosue, and K. Namba. 1998. Structure and switching of bacterial flagellar filaments studied by x-ray fiber diffraction. Nat. Struct. Biol. 5:125-132.
-
(1998)
Nat. Struct. Biol.
, vol.5
, pp. 125-132
-
-
Yamashita, I.1
Hasegawa, K.2
Suzuki, H.3
Vonderviszt, F.4
Mimori-Kiyosue, Y.5
Namba, K.6
-
11
-
-
0031982793
-
Quasi- and non-equivalence in the structure of bacterial flagellar filament
-
Hasegawa, K., I. Yamashita, and K. Namba. 1998. Quasi- and non-equivalence in the structure of bacterial flagellar filament. Biophys. J. 74:569-575.
-
(1998)
Biophys. J.
, vol.74
, pp. 569-575
-
-
Hasegawa, K.1
Yamashita, I.2
Namba, K.3
-
12
-
-
33645510061
-
Switch interactions control energy frustration and multiple flagellar filament structures
-
Kitao, A., K. Yonekura, S. Maki-Yonekura, F. A. Samatey, K. Imada, K. Namba, and N. Go. 2006. Switch interactions control energy frustration and multiple flagellar filament structures. Proc. Natl. Acad. Sci. USA. 103:4894-4899.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 4894-4899
-
-
Kitao, A.1
Yonekura, K.2
Maki-Yonekura, S.3
Samatey, F.A.4
Imada, K.5
Namba, K.6
Go, N.7
-
13
-
-
0042238051
-
Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy
-
Yonekura, K., S. Maki-Yonekura, and K. Namba. 2003. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature. 424:643-650.
-
(2003)
Nature
, vol.424
, pp. 643-650
-
-
Yonekura, K.1
Maki-Yonekura, S.2
Namba, K.3
-
14
-
-
4344685227
-
Global ribosome motions revealed with elastic network model
-
Wang, Y., A. J. Rader, I. Bahar, and R. L. Jernigan. 2004. Global ribosome motions revealed with elastic network model. J. Struct. Biol. 147:302-314.
-
(2004)
J. Struct. Biol.
, vol.147
, pp. 302-314
-
-
Wang, Y.1
Rader, A.J.2
Bahar, I.3
Jernigan, R.L.4
-
15
-
-
24144478280
-
Exploring global motions and correlations in the ribosome
-
Trylska, J., V. Tozzini, and J. A. McCammon. 2005. Exploring global motions and correlations in the ribosome. Biophys. J. 89:1455-1463.
-
(2005)
Biophys. J.
, vol.89
, pp. 1455-1463
-
-
Trylska, J.1
Tozzini, V.2
McCammon, J.A.3
-
16
-
-
9644266693
-
Diversity and identity of mechanical properties of icosahedral viral capsids studied with elastic network normal mode analysis
-
Tama, F., and C. L. Brooks III. 2005. Diversity and identity of mechanical properties of icosahedral viral capsids studied with elastic network normal mode analysis. J. Mol. Biol. 345:299-314.
-
(2005)
J. Mol. Biol.
, vol.345
, pp. 299-314
-
-
Tama, F.1
Brooks III, C.L.2
-
17
-
-
24344438610
-
A coarse grained model for the dynamics of flap opening in HIV-1 protease
-
Tozzini, V., and A. McCammon. 2005. A coarse grained model for the dynamics of flap opening in HIV-1 protease. Chem. Phys. Lett. 413:123-128.
-
(2005)
Chem. Phys. Lett.
, vol.413
, pp. 123-128
-
-
Tozzini, V.1
McCammon, A.2
-
18
-
-
24944541377
-
Allostery of actin filaments: Molecular dynamics simulations and coarse-grained analysis
-
Chu, J.-W., and G. A. Voth. 2005. Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis. Proc. Natl. Acad. Sci. USA. 102:13111-13116.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 13111-13116
-
-
Chu, J.-W.1
Voth, G.A.2
-
19
-
-
1642485164
-
Coarse-grained model for semiquantitative lipid simulations
-
Marrink, S. J., A. H. de Vries, and A. E. Mark. 2004. Coarse-grained model for semiquantitative lipid simulations. J. Phys. Chem. B. 108:750-760.
-
(2004)
J. Phys. Chem. B.
, vol.108
, pp. 750-760
-
-
Marrink, S.J.1
De Vries, A.H.2
Mark, A.E.3
-
20
-
-
19744367689
-
Simulation of gel phase formation and melting in lipid bilayers using a coarse-grained model
-
Marrink, S. J., J. Risselada, and A. E. Mark. 2005. Simulation of gel phase formation and melting in lipid bilayers using a coarse-grained model. Chem. Phys. Lipids. 135:223-244.
-
(2005)
Chem. Phys. Lipids.
, vol.135
, pp. 223-244
-
-
Marrink, S.J.1
Risselada, J.2
Mark, A.E.3
-
21
-
-
0035846402
-
Simulations of phospholipids using a coarse-grain model
-
Shelley, J. C., M. Y. Shelley, R. C. Reeder, S. Bandyopadhyay, P. B. Moore, and M. L. Klein. 2001. Simulations of phospholipids using a coarse-grain model. J. Phys. Chem. B. 105:9785-9792.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 9785-9792
-
-
Shelley, J.C.1
Shelley, M.Y.2
Reeder, R.C.3
Bandyopadhyay, S.4
Moore, P.B.5
Klein, M.L.6
-
22
-
-
0036681718
-
Computer simulation studies of biomembranes using a coarse-grain model
-
Lopez, C., P. Moore, J. Shelley, M. Shelley, and M. Klein. 2002. Computer simulation studies of biomembranes using a coarse-grain model. Comput. Phys. Commun. 147:1-6.
-
(2002)
Comput. Phys. Commun.
, vol.147
, pp. 1-6
-
-
Lopez, C.1
Moore, P.2
Shelley, J.3
Shelley, M.4
Klein, M.5
-
23
-
-
33644893631
-
Coarse-grained protein-lipid model with application to lipoprotein particles
-
Shih, A. Y., A. Arkhipov, P. L. Freddolino, and K. Schulten. 2006. Coarse-grained protein-lipid model with application to lipoprotein particles. J. Phys. Chem. B. 110:3674-3684.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 3674-3684
-
-
Shih, A.Y.1
Arkhipov, A.2
Freddolino, P.L.3
Schulten, K.4
-
24
-
-
33847193915
-
Assembly of lipoprotein particles revealed by molecular dynamics simulations
-
In press
-
Shih, A. Y., P. L. Freddolino, A. Arkhipov, and K. Schulten. 2006. Assembly of lipoprotein particles revealed by molecular dynamics simulations. J. Struct. Biol. In press.
-
(2006)
J. Struct. Biol.
-
-
Shih, A.Y.1
Freddolino, P.L.2
Arkhipov, A.3
Schulten, K.4
-
26
-
-
0000742931
-
A "neural gas" network learns topologies
-
T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors. Elsevier, Amsterdam
-
Martinetz, T., and K. Schulten. 1991. A "neural gas" network learns topologies. In Artificial Neural Networks. T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors. Elsevier, Amsterdam.
-
(1991)
Artificial Neural Networks
-
-
Martinetz, T.1
Schulten, K.2
-
27
-
-
0028204732
-
Topology-representing networks
-
Martinetz, T., and K. Schulten. 1994. Topology-representing networks. Neural Networks. 7:507-522.
-
(1994)
Neural Networks
, vol.7
, pp. 507-522
-
-
Martinetz, T.1
Schulten, K.2
-
28
-
-
0041784950
-
All-atom empirical potential for molecular modeling and dynamics studies of proteins
-
MacKerell, A. D. Jr., D. Bashford, M. Bellott, R. L. Dunbrack Jr., J. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph, L. Kuchnir, et al. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 102:3586-3616.
-
(1998)
J. Phys. Chem. B
, vol.102
, pp. 3586-3616
-
-
MacKerell Jr., A.D.1
Bashford, D.2
Bellott, M.3
Dunbrack Jr., R.L.4
Evanseck, J.5
Field, M.J.6
Fischer, S.7
Gao, J.8
Guo, H.9
Ha, S.10
Joseph, D.11
Kuchnir, L.12
-
29
-
-
0030832809
-
Short-range conformational energies, secondary structure propensities, and recognition of correct sequence-structure matches
-
Bahar, I., M. Kaplan, and R. L. Jernigan. 1997. Short-range conformational energies, secondary structure propensities, and recognition of correct sequence-structure matches. Protein Struct. Funct. Gen. 29:292-308.
-
(1997)
Protein Struct. Funct. Gen.
, vol.29
, pp. 292-308
-
-
Bahar, I.1
Kaplan, M.2
Jernigan, R.L.3
-
30
-
-
27344436659
-
Scalable molecular dynamics with NAMD
-
Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten. 2005. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26:1781-1802.
-
(2005)
J. Comput. Chem.
, vol.26
, pp. 1781-1802
-
-
Phillips, J.C.1
Braun, R.2
Wang, W.3
Gumbart, J.4
Tajkhorshid, E.5
Villa, E.6
Chipot, C.7
Skeel, R.D.8
Kale, L.9
Schulten, K.10
-
32
-
-
0025148428
-
Abrupt changes in flagellar rotation observed by laser dark-field microscopy
-
Kudo, S., Y. Magariyama, and S.-I. Aizawa. 1990. Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature. 346:677-680.
-
(1990)
Nature
, vol.346
, pp. 677-680
-
-
Kudo, S.1
Magariyama, Y.2
Aizawa, S.-I.3
-
33
-
-
0034015656
-
Real-time imaging of fluorescent flagellar filaments
-
Turner, L., W. S. Ryu, and H. C. Berg. 2000. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182:2793-2801.
-
(2000)
J. Bacteriol.
, vol.182
, pp. 2793-2801
-
-
Turner, L.1
Ryu, W.S.2
Berg, H.C.3
|