-
1
-
-
0039116206
-
Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey
-
Szilagyi A., and Zavodszky P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8 (2000) 493-504
-
(2000)
Structure
, vol.8
, pp. 493-504
-
-
Szilagyi, A.1
Zavodszky, P.2
-
2
-
-
0034677790
-
Elucidation of determinants of protein stability through genome sequence analysis
-
Chakravarty S., and Varadarajan R. Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett. 470 (2000) 65-69
-
(2000)
FEBS Lett.
, vol.470
, pp. 65-69
-
-
Chakravarty, S.1
Varadarajan, R.2
-
3
-
-
0034724271
-
Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity?
-
Jaenicke R. Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity?. Proc. Natl. Acad. Sci. USA 97 (2000) 2962-2964
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 2962-2964
-
-
Jaenicke, R.1
-
4
-
-
0017706821
-
Reversible thermal unfolding of thermostable phosphoglycerate kinase. Thermostability associated with mean zero enthalpy change
-
Nojima H.A.I., Oshima T., and Noda H. Reversible thermal unfolding of thermostable phosphoglycerate kinase. Thermostability associated with mean zero enthalpy change. J. Mol. Biol. 116 (1977) 429-442
-
(1977)
J. Mol. Biol.
, vol.116
, pp. 429-442
-
-
Nojima, H.A.I.1
Oshima, T.2
Noda, H.3
-
6
-
-
0034693042
-
Structural and genomic correlates of hyperthermostability
-
Cambillau C., and Claverie J. Structural and genomic correlates of hyperthermostability. J. Biol. Chem. 275 (2000) 32383-32386
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 32383-32386
-
-
Cambillau, C.1
Claverie, J.2
-
7
-
-
0034191064
-
The stability of thermophilic proteins: a study based on comprehensive genome comparison
-
Das F., and Gerstein M. The stability of thermophilic proteins: a study based on comprehensive genome comparison. Funct. Integr. Genomics 1 (2000) 76-88
-
(2000)
Funct. Integr. Genomics
, vol.1
, pp. 76-88
-
-
Das, F.1
Gerstein, M.2
-
8
-
-
0033596744
-
Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme
-
Beadle B., Baase W., Wilson D., Gilkes N., and Shoichet B. Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme. Biochemistry 38 (1999) 2570-2576
-
(1999)
Biochemistry
, vol.38
, pp. 2570-2576
-
-
Beadle, B.1
Baase, W.2
Wilson, D.3
Gilkes, N.4
Shoichet, B.5
-
9
-
-
0035960641
-
Thermodynamic differences among homologous thermophilic and mesophilic proteins
-
Kumar S., Tsai C., and Nussinov R. Thermodynamic differences among homologous thermophilic and mesophilic proteins. Biochemistry 40 (2001) 14152-14165
-
(2001)
Biochemistry
, vol.40
, pp. 14152-14165
-
-
Kumar, S.1
Tsai, C.2
Nussinov, R.3
-
10
-
-
33745726737
-
Lessons in stability from thermophilic proteins
-
Razvi A., and Scholtz J.M. Lessons in stability from thermophilic proteins. Protein Sci. 15 (2006) 1569-1578
-
(2006)
Protein Sci.
, vol.15
, pp. 1569-1578
-
-
Razvi, A.1
Scholtz, J.M.2
-
11
-
-
0029992278
-
Molecular chaperones in cellular protein folding
-
Hartl F.U. Molecular chaperones in cellular protein folding. Nature 381 (1996) 571-580
-
(1996)
Nature
, vol.381
, pp. 571-580
-
-
Hartl, F.U.1
-
12
-
-
0028307452
-
Chaperonin GroE and ADP facilitate the folding of various proteins and protect against heat inactivation
-
Kawata Y., Nosaka K., Hongo K., Mizobata T., and Nagai J. Chaperonin GroE and ADP facilitate the folding of various proteins and protect against heat inactivation. FEBS Lett. 345 (1994) 229-232
-
(1994)
FEBS Lett.
, vol.345
, pp. 229-232
-
-
Kawata, Y.1
Nosaka, K.2
Hongo, K.3
Mizobata, T.4
Nagai, J.5
-
13
-
-
0033617129
-
GroEL-GroES Cycling: ATP and nonnative polypeptide direct alternation of folding-active rings
-
Rye H., Roseman A., Chen S., Furtak K., Fenton W., Saibil H., and Horwich A. GroEL-GroES Cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97 (1999) 325-338
-
(1999)
Cell
, vol.97
, pp. 325-338
-
-
Rye, H.1
Roseman, A.2
Chen, S.3
Furtak, K.4
Fenton, W.5
Saibil, H.6
Horwich, A.7
-
14
-
-
0028785583
-
Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES
-
Weissman J., Hohi C., Kovalenko O., Kashi Y., Chen S., Braig K., Saibil H., Fenton W., and Horwich A. Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83 (1995) 577-587
-
(1995)
Cell
, vol.83
, pp. 577-587
-
-
Weissman, J.1
Hohi, C.2
Kovalenko, O.3
Kashi, Y.4
Chen, S.5
Braig, K.6
Saibil, H.7
Fenton, W.8
Horwich, A.9
-
15
-
-
4344629738
-
Investigation of the immunocompetent cells that bind early pregnancy factor and preliminary studies of the early pregnancy factor target molecule
-
Athanasas-Platsis S., et al. Investigation of the immunocompetent cells that bind early pregnancy factor and preliminary studies of the early pregnancy factor target molecule. Immunol. Cell. Biol. 82 4 (2004) 361-369
-
(2004)
Immunol. Cell. Biol.
, vol.82
, Issue.4
, pp. 361-369
-
-
Athanasas-Platsis, S.1
-
16
-
-
0038645376
-
Ten kilodalton heat shock protein (HSP10) is overexpressed during carcinogenesis of large bowel and uterine exocervix
-
Cappello F., et al. Ten kilodalton heat shock protein (HSP10) is overexpressed during carcinogenesis of large bowel and uterine exocervix. Cancer Lett. 196 1 (2003) 35-41
-
(2003)
Cancer Lett.
, vol.196
, Issue.1
, pp. 35-41
-
-
Cappello, F.1
-
17
-
-
0030067634
-
The crystal structure of the GroES co-chaperonin at 2.8 Å resolution
-
Hunt J.F., et al. The crystal structure of the GroES co-chaperonin at 2.8 Å resolution. Nature 379 6560 (1996) 37-45
-
(1996)
Nature
, vol.379
, Issue.6560
, pp. 37-45
-
-
Hunt, J.F.1
-
18
-
-
0036399456
-
Low stability for monomeric human chaperonin protein 10: interprotein interactions contribute majority of oligomer stability
-
Guidry J.J., and Wittung-Stafshede P. Low stability for monomeric human chaperonin protein 10: interprotein interactions contribute majority of oligomer stability. Arch. Biochem. Biophys. 405 (2002) 280-282
-
(2002)
Arch. Biochem. Biophys.
, vol.405
, pp. 280-282
-
-
Guidry, J.J.1
Wittung-Stafshede, P.2
-
19
-
-
0031563834
-
The structural stability of the co-chaperonin GroES
-
Boudker O., Todd M.J., and Freire E. The structural stability of the co-chaperonin GroES. J. Mol. Biol. 272 5 (1997) 770-779
-
(1997)
J. Mol. Biol.
, vol.272
, Issue.5
, pp. 770-779
-
-
Boudker, O.1
Todd, M.J.2
Freire, E.3
-
20
-
-
0029974605
-
Reversible oligomerization and denaturation of the chaperonin GroES
-
Seale J.W., et al. Reversible oligomerization and denaturation of the chaperonin GroES. Biochemistry 35 13 (1996) 4079-4083
-
(1996)
Biochemistry
, vol.35
, Issue.13
, pp. 4079-4083
-
-
Seale, J.W.1
-
21
-
-
0034489321
-
Reversible denaturation of the oligomeric human chaperonin 10: denatured state depends on chemical denaturant
-
Guidry J.J., and Wittung-Stafshede P. Reversible denaturation of the oligomeric human chaperonin 10: denatured state depends on chemical denaturant. Protein Sci. 9 (2000) 2109-2117
-
(2000)
Protein Sci.
, vol.9
, pp. 2109-2117
-
-
Guidry, J.J.1
Wittung-Stafshede, P.2
-
22
-
-
27644534843
-
Role of the unique peptide tail in hyperthermostable Aquifex aeolicus co-chaperonin protein 10
-
Luke K., Apiyo D., and Wittung-Stafshede P. Role of the unique peptide tail in hyperthermostable Aquifex aeolicus co-chaperonin protein 10. Biochemistry 44 (2005) 14385-14395
-
(2005)
Biochemistry
, vol.44
, pp. 14385-14395
-
-
Luke, K.1
Apiyo, D.2
Wittung-Stafshede, P.3
-
23
-
-
0032568375
-
The complete genome of the hyperthermophilic bacterium Aquifex aeolicus
-
Deckert G., et al. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392 6674 (1998) 353-358
-
(1998)
Nature
, vol.392
, Issue.6674
, pp. 353-358
-
-
Deckert, G.1
-
24
-
-
0033407495
-
Interdomain interactions within the gene 3 protein of filamentous phage
-
Chatellier J., et al. Interdomain interactions within the gene 3 protein of filamentous phage. FEBS Lett. 463 3 (1999) 371-374
-
(1999)
FEBS Lett.
, vol.463
, Issue.3
, pp. 371-374
-
-
Chatellier, J.1
-
25
-
-
1642422340
-
First characterization of co-chaperonin protein 10 from hyper-thermophilic Aquifex aeolicus
-
Guidry J.J., and Wittung-Stafshede P. First characterization of co-chaperonin protein 10 from hyper-thermophilic Aquifex aeolicus. Biochem. Biophys. Res. Commun. 317 (2004) 176-180
-
(2004)
Biochem. Biophys. Res. Commun.
, vol.317
, pp. 176-180
-
-
Guidry, J.J.1
Wittung-Stafshede, P.2
-
26
-
-
27644543099
-
Dissecting homo-heptamer thermodynamics by isothermal titration calorimetry: entropy-driven assembly of co-chaperonin protein 10
-
Luke K., Apiyo D., and Wittung-Stafshede P. Dissecting homo-heptamer thermodynamics by isothermal titration calorimetry: entropy-driven assembly of co-chaperonin protein 10. Biophys. J. 89 (2005) 3332-3336
-
(2005)
Biophys. J.
, vol.89
, pp. 3332-3336
-
-
Luke, K.1
Apiyo, D.2
Wittung-Stafshede, P.3
-
27
-
-
33749263567
-
Kinetic folding and assembly mechanisms differ for two homologous heptamers
-
Luke K., Perham M., and Wittung-Stafshede P. Kinetic folding and assembly mechanisms differ for two homologous heptamers. J. Mol. Biol. 363 (2006) 729-742
-
(2006)
J. Mol. Biol.
, vol.363
, pp. 729-742
-
-
Luke, K.1
Perham, M.2
Wittung-Stafshede, P.3
-
28
-
-
0029088389
-
Monomer-heptamer equilibrium of theEscherichia coli chaperonin GroES
-
Zondlo J., et al. Monomer-heptamer equilibrium of theEscherichia coli chaperonin GroES. Biochemistry 34 33 (1995) 10334-10339
-
(1995)
Biochemistry
, vol.34
, Issue.33
, pp. 10334-10339
-
-
Zondlo, J.1
-
29
-
-
0025886741
-
Chemical synthesis of 10 kDa chaperonin. Biological activity suggests chaperonins do not require other molecular chaperones
-
Mascagni P., et al. Chemical synthesis of 10 kDa chaperonin. Biological activity suggests chaperonins do not require other molecular chaperones. FEBS Lett. 286 1-2 (1991) 201-203
-
(1991)
FEBS Lett.
, vol.286
, Issue.1-2
, pp. 201-203
-
-
Mascagni, P.1
-
30
-
-
0029560102
-
The C-terminal sequence of the chaperonin GroES is required for oligomerization
-
Seale J.W., and Horowitz P.M. The C-terminal sequence of the chaperonin GroES is required for oligomerization. J. Biol. Chem. 270 51 (1995) 30268-30270
-
(1995)
J. Biol. Chem.
, vol.270
, Issue.51
, pp. 30268-30270
-
-
Seale, J.W.1
Horowitz, P.M.2
-
31
-
-
0033588259
-
Unfolding and refolding of Escherichia coli chaperonin GroES is expressed by a three-state model
-
Higurashi T., Nosaka K., Mizobata T., Nagai J., and Kawata Y. Unfolding and refolding of Escherichia coli chaperonin GroES is expressed by a three-state model. J. Mol. Biol. 291 (1999) 703-713
-
(1999)
J. Mol. Biol.
, vol.291
, pp. 703-713
-
-
Higurashi, T.1
Nosaka, K.2
Mizobata, T.3
Nagai, J.4
Kawata, Y.5
-
32
-
-
0031260295
-
Stable expression and rapid purification of Escherichia coli GroEL and GroES chaperonins
-
Kamireddi M., Eisenstein E., and Reddy P. Stable expression and rapid purification of Escherichia coli GroEL and GroES chaperonins. Protein Expr. Purif. 11 1 (1997) 47-52
-
(1997)
Protein Expr. Purif.
, vol.11
, Issue.1
, pp. 47-52
-
-
Kamireddi, M.1
Eisenstein, E.2
Reddy, P.3
-
33
-
-
0023322630
-
Selective binding and solvent denaturation
-
Schellman J.A. Selective binding and solvent denaturation. Biopolymers 26 4 (1987) 549-559
-
(1987)
Biopolymers
, vol.26
, Issue.4
, pp. 549-559
-
-
Schellman, J.A.1
-
34
-
-
28444495078
-
Unfolding of heptameric co-chaperonin protein follows "fly casting" mechanism: observation of transient nonnative heptamer
-
Perham M., et al. Unfolding of heptameric co-chaperonin protein follows "fly casting" mechanism: observation of transient nonnative heptamer. J. Am. Chem. Soc. 127 47 (2005) 16402-16403
-
(2005)
J. Am. Chem. Soc.
, vol.127
, Issue.47
, pp. 16402-16403
-
-
Perham, M.1
-
35
-
-
0032287230
-
Protein thermostability in extremophiles
-
Scandurra R., Consalvi V., Chiaraluce R., Politi L., and Engel P. Protein thermostability in extremophiles. Biochimie 80 (1998) 933-941
-
(1998)
Biochimie
, vol.80
, pp. 933-941
-
-
Scandurra, R.1
Consalvi, V.2
Chiaraluce, R.3
Politi, L.4
Engel, P.5
-
36
-
-
0030801002
-
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
-
Altschul S.F., Madden T., Schaffer A., Zhang J., Zhang Z., Miller W., and Lipman D. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 (1997) 3389-3402
-
(1997)
Nucleic Acids Res.
, vol.25
, pp. 3389-3402
-
-
Altschul, S.F.1
Madden, T.2
Schaffer, A.3
Zhang, J.4
Zhang, Z.5
Miller, W.6
Lipman, D.7
-
37
-
-
0035878724
-
Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements
-
Schaffer A., Aravind L., Madden T., Shavirin S., Spouge J., Wolf Y., Koonin E., and Altschul S. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 29 (2001) 2994-3005
-
(2001)
Nucleic Acids Res.
, vol.29
, pp. 2994-3005
-
-
Schaffer, A.1
Aravind, L.2
Madden, T.3
Shavirin, S.4
Spouge, J.5
Wolf, Y.6
Koonin, E.7
Altschul, S.8
-
38
-
-
0042887400
-
Multiple parallel-pathway folding of proline-free Staphylococcal nuclease
-
Kamagata K., et al. Multiple parallel-pathway folding of proline-free Staphylococcal nuclease. J. Mol. Biol. 332 5 (2003) 1143-1153
-
(2003)
J. Mol. Biol.
, vol.332
, Issue.5
, pp. 1143-1153
-
-
Kamagata, K.1
-
39
-
-
2942699990
-
Slow unfolding explains high stability of thermostable ferredoxins: common mechanism governing thermostability?s
-
Wittung-Stafshede P. Slow unfolding explains high stability of thermostable ferredoxins: common mechanism governing thermostability?s. Biochemica et Biophysica Acta 1700 (2004) 1-4
-
(2004)
Biochemica et Biophysica Acta
, vol.1700
, pp. 1-4
-
-
Wittung-Stafshede, P.1
-
40
-
-
0032540988
-
Recombinant PGK from the hyperthermophilic bacterium Thermotoga maritima: catalytic, spectral, and thermodynamic properties
-
Grattinger M., Dankesreiter A., Schurig H., and Jaenicke R. Recombinant PGK from the hyperthermophilic bacterium Thermotoga maritima: catalytic, spectral, and thermodynamic properties. J. Mol. Biol. 280 (1998) 525-533
-
(1998)
J. Mol. Biol.
, vol.280
, pp. 525-533
-
-
Grattinger, M.1
Dankesreiter, A.2
Schurig, H.3
Jaenicke, R.4
|