메뉴 건너뛰기




Volumn 19, Issue 10, 2006, Pages 1550-1557

Invariance priors for Bayesian feed-forward neural networks

Author keywords

Bayesian; Evidence; Model selection; Multilayer perceptron; Prior; Pruning; Regularization; Transformation invariance

Indexed keywords

COMPUTATIONAL METHODS; INVARIANCE; MATHEMATICAL MODELS; MATHEMATICAL TRANSFORMATIONS; PROBABILITY;

EID: 33751203854     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2006.01.017     Document Type: Article
Times cited : (12)

References (19)
  • 1
    • 0042109169 scopus 로고    scopus 로고
    • Approach for the evaluation of speckle deformation measurements by application of the wavelet transformation
    • Berger E., et al. Approach for the evaluation of speckle deformation measurements by application of the wavelet transformation. Applied Optics 36 (1997) 7455-7460
    • (1997) Applied Optics , vol.36 , pp. 7455-7460
    • Berger, E.1
  • 2
    • 0032614895 scopus 로고    scopus 로고
    • Reconstruction of surfaces from phase-shifting speckle interferometry
    • Berger E., et al. Reconstruction of surfaces from phase-shifting speckle interferometry. Applied Optics 38 (1999) 4997-5003
    • (1999) Applied Optics , vol.38 , pp. 4997-5003
    • Berger, E.1
  • 7
    • 0031214394 scopus 로고    scopus 로고
    • Regularization with a pruning prior
    • Goutte C., and Hansen L.K. Regularization with a pruning prior. Neural Networks 10 6 (1997) 1053-1059
    • (1997) Neural Networks , vol.10 , Issue.6 , pp. 1053-1059
    • Goutte, C.1    Hansen, L.K.2
  • 9
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks
    • Lampinen J., and Vehtari A. Bayesian approach for neural networks. Neural Networks 14 (2001) 257-274
    • (2001) Neural Networks , vol.14 , pp. 257-274
    • Lampinen, J.1    Vehtari, A.2
  • 12
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • Mackay D.J.C. A practical Bayesian framework for backpropagation networks. Neural Computation 4 3 (1992) 448-472
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • Mackay, D.J.C.1
  • 13
    • 33751217274 scopus 로고    scopus 로고
    • NAG LTD (2003). Optimization routine nag_nlp_sol, mark18. Oxford, OX2 8DR, UK. http://www.nag.co.uk
  • 14
    • 33751203985 scopus 로고    scopus 로고
    • Neal, R. M. (1992). Bayesian training of backpropagation networks, Technical report CRG-TR-92-1. Department of Computer Science, University of Toronto
  • 15
    • 0032803502 scopus 로고    scopus 로고
    • Bayesian neural networks for classification
    • Penny W.D., and Roberts S.J. Bayesian neural networks for classification. Neural Networks 12 (1999) 877-892
    • (1999) Neural Networks , vol.12 , pp. 877-892
    • Penny, W.D.1    Roberts, S.J.2
  • 17
    • 0029754435 scopus 로고
    • A review of Bayesian neural networks with an application to near infrared spectroscopy
    • Thodberg H.H. A review of Bayesian neural networks with an application to near infrared spectroscopy. IEEE Transactions on Neural Networks 7 1 (1995) 56-72
    • (1995) IEEE Transactions on Neural Networks , vol.7 , Issue.1 , pp. 56-72
    • Thodberg, H.H.1
  • 18
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • Williams P.M. Bayesian regularization and pruning using a Laplace prior. Neural Computation 7 (1995) 117-143
    • (1995) Neural Computation , vol.7 , pp. 117-143
    • Williams, P.M.1
  • 19
    • 0033104417 scopus 로고    scopus 로고
    • Matrix logarithm parametrizations for neural network covariance models
    • Williams P.M. Matrix logarithm parametrizations for neural network covariance models. Neural Networks 12 (1999) 299-308
    • (1999) Neural Networks , vol.12 , pp. 299-308
    • Williams, P.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.