-
1
-
-
0030266582
-
Hybrid modeling, HMM/NN architectures and protein applications
-
Baldi, P., & Chauvin, Y. (1996). Hybrid modeling, HMM/NN architectures and protein applications. Neural Computation, 8, 1541-1565.
-
(1996)
Neural Computation
, vol.8
, pp. 1541-1565
-
-
Baldi, P.1
Chauvin, Y.2
-
2
-
-
0001728412
-
Hyperbolic distributions
-
S. Kotz & N. L. Johnson (Eds.), New York: Wiley
-
Barndorff-Nielsen, O., & Blæsild, P. (1983). Hyperbolic distributions. In S. Kotz & N. L. Johnson (Eds.), (pp. 700). Encyclopedia of statistical sciences, 3. New York: Wiley.
-
(1983)
Encyclopedia of Statistical Sciences
, vol.3
, pp. 700
-
-
Barndorff-Nielsen, O.1
Blæsild, P.2
-
6
-
-
85153948635
-
Estimating conditional probability densities for periodic variables
-
G. Tesauro & D. Tourektzky & T. Leen (Eds.), Cambridge, MA: MIT Press
-
Bishop, C. M., & Legleye, C. (1995). Estimating conditional probability densities for periodic variables. In G. Tesauro & D. Tourektzky & T. Leen (Eds.), (pp. 641). Advances in neural information processing systems, 7. Cambridge, MA: MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 641
-
-
Bishop, C.M.1
Legleye, C.2
-
8
-
-
0037924459
-
The matrix-logarithmic covariance model
-
Chiu, T. Y. M., Leonard, T., & Tsui, K.-W. (1996). The matrix-logarithmic covariance model. Journal of the American Statistical Association, 91 (433), 198-210.
-
(1996)
Journal of the American Statistical Association
, vol.91
, Issue.433
, pp. 198-210
-
-
Chiu, T.Y.M.1
Leonard, T.2
Tsui, K.-W.3
-
10
-
-
0001551844
-
Supervised learning from incomplete data via an EM approach
-
J. D. Cowan, G. Tesauro & J. Alspector (Eds.), Los Altos, CA: Morgan Kaufmann
-
Ghahramani, Z., & Jordan, M. I. (1994). Supervised learning from incomplete data via an EM approach. In J. D. Cowan, G. Tesauro & J. Alspector (Eds.), Advances in neural information processing systems, 6. (pp. 120). Los Altos, CA: Morgan Kaufmann.
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
, pp. 120
-
-
Ghahramani, Z.1
Jordan, M.I.2
-
14
-
-
21144471428
-
Bayesian inference for a covariance matrix
-
Leonard, T., & Hsu, J. S. J. (1992). Bayesian inference for a covariance matrix. Annals of Statistics, 20 (4), 1669-1696.
-
(1992)
Annals of Statistics
, vol.20
, Issue.4
, pp. 1669-1696
-
-
Leonard, T.1
Hsu, J.S.J.2
-
15
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
MacKay, D. J. C. (1992). A practical Bayesian framework for backpropagation networks. Neural Computation, 4 (3), 448-472.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 448-472
-
-
MacKay, D.J.C.1
-
16
-
-
0001518003
-
Derivatives of the matrix exponential and their computation
-
Najfeld, I., & Havel, T. F. (1995). Derivatives of the matrix exponential and their computation. Advances in Applied Mathematics, 16, 321-375.
-
(1995)
Advances in Applied Mathematics
, vol.16
, pp. 321-375
-
-
Najfeld, I.1
Havel, T.F.2
-
17
-
-
85153950631
-
Learning local error bars for nonlinear regression
-
G. Tesauro & D. S. Touretzky & T. K. Leen (Eds.), Cambridge, MA: MIT Press
-
Nix, D. A., & Weigend, A. S. (1995). Learning local error bars for nonlinear regression. In G. Tesauro & D. S. Touretzky & T. K. Leen (Eds.), (pp. 489). Advances in neural information processing systems, 7. Cambridge, MA: MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 489
-
-
Nix, D.A.1
Weigend, A.S.2
-
18
-
-
21444460810
-
Unconstrained parametrizations for variance-covariance matrices
-
Pinheiro, J. C., & Bates, D. M. (1996). Unconstrained parametrizations for variance-covariance matrices. Statistics and Computing, 6, 289-296.
-
(1996)
Statistics and Computing
, vol.6
, pp. 289-296
-
-
Pinheiro, J.C.1
Bates, D.M.2
-
19
-
-
0004161838
-
-
Cambridge: Cambridge University Press
-
Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1992). Numerical recipes in C. II. Cambridge: Cambridge University Press.
-
(1992)
Numerical Recipes in C. II
-
-
Press, W.H.1
Flannery, B.P.2
Teukolsky, S.A.3
Vetterling, W.T.4
-
21
-
-
0027306396
-
Improved generalization and network pruning using adaptive Laplace regularization
-
London: Institution of Electrical Engineers
-
Williams, P. M. (1993). Improved generalization and network pruning using adaptive Laplace regularization. In: Proceedings of the third IEE international conference on artificial neural networks (pp. 76-80). London: Institution of Electrical Engineers.
-
(1993)
Proceedings of the Third IEE International Conference on Artificial Neural Networks
, pp. 76-80
-
-
Williams, P.M.1
-
22
-
-
0000673452
-
Bayesian regularization and pruning using a Laplace prior
-
Williams, P. M. (1995). Bayesian regularization and pruning using a Laplace prior. Neural Computation, 7, 117-143.
-
(1995)
Neural Computation
, vol.7
, pp. 117-143
-
-
Williams, P.M.1
-
23
-
-
0030585112
-
Using neural networks to model conditional multivariate densities
-
Williams, P. M. (1996). Using neural networks to model conditional multivariate densities. Neural Computation, 8, 843-854.
-
(1996)
Neural Computation
, vol.8
, pp. 843-854
-
-
Williams, P.M.1
-
24
-
-
84898985951
-
Modelling seasonality and trends in daily rainfall data
-
M. I. Jordan & M. J. Kearns & S. A. Solla (Eds.), Cambridge, MA: MIT Press
-
Williams, P. M. (1998). Modelling seasonality and trends in daily rainfall data. In M. I. Jordan & M. J. Kearns & S. A. Solla (Eds.), (pp. 985). Advances in neural information processing systems, 10. Cambridge, MA: MIT Press.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 985
-
-
Williams, P.M.1
|