메뉴 건너뛰기




Volumn 12, Issue 2, 1999, Pages 299-308

Matrix logarithm parametrizations for neural network covariance models

Author keywords

Covariance models; Matrix exponential; Matrix logarithm; Regularization

Indexed keywords

MATHEMATICAL MODELS; MATRIX ALGEBRA; NORMAL DISTRIBUTION;

EID: 0033104417     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(98)00130-0     Document Type: Article
Times cited : (8)

References (24)
  • 1
    • 0030266582 scopus 로고    scopus 로고
    • Hybrid modeling, HMM/NN architectures and protein applications
    • Baldi, P., & Chauvin, Y. (1996). Hybrid modeling, HMM/NN architectures and protein applications. Neural Computation, 8, 1541-1565.
    • (1996) Neural Computation , vol.8 , pp. 1541-1565
    • Baldi, P.1    Chauvin, Y.2
  • 2
    • 0001728412 scopus 로고
    • Hyperbolic distributions
    • S. Kotz & N. L. Johnson (Eds.), New York: Wiley
    • Barndorff-Nielsen, O., & Blæsild, P. (1983). Hyperbolic distributions. In S. Kotz & N. L. Johnson (Eds.), (pp. 700). Encyclopedia of statistical sciences, 3. New York: Wiley.
    • (1983) Encyclopedia of Statistical Sciences , vol.3 , pp. 700
    • Barndorff-Nielsen, O.1    Blæsild, P.2
  • 6
    • 85153948635 scopus 로고
    • Estimating conditional probability densities for periodic variables
    • G. Tesauro & D. Tourektzky & T. Leen (Eds.), Cambridge, MA: MIT Press
    • Bishop, C. M., & Legleye, C. (1995). Estimating conditional probability densities for periodic variables. In G. Tesauro & D. Tourektzky & T. Leen (Eds.), (pp. 641). Advances in neural information processing systems, 7. Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 641
    • Bishop, C.M.1    Legleye, C.2
  • 10
    • 0001551844 scopus 로고
    • Supervised learning from incomplete data via an EM approach
    • J. D. Cowan, G. Tesauro & J. Alspector (Eds.), Los Altos, CA: Morgan Kaufmann
    • Ghahramani, Z., & Jordan, M. I. (1994). Supervised learning from incomplete data via an EM approach. In J. D. Cowan, G. Tesauro & J. Alspector (Eds.), Advances in neural information processing systems, 6. (pp. 120). Los Altos, CA: Morgan Kaufmann.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 120
    • Ghahramani, Z.1    Jordan, M.I.2
  • 14
    • 21144471428 scopus 로고
    • Bayesian inference for a covariance matrix
    • Leonard, T., & Hsu, J. S. J. (1992). Bayesian inference for a covariance matrix. Annals of Statistics, 20 (4), 1669-1696.
    • (1992) Annals of Statistics , vol.20 , Issue.4 , pp. 1669-1696
    • Leonard, T.1    Hsu, J.S.J.2
  • 15
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay, D. J. C. (1992). A practical Bayesian framework for backpropagation networks. Neural Computation, 4 (3), 448-472.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 16
    • 0001518003 scopus 로고
    • Derivatives of the matrix exponential and their computation
    • Najfeld, I., & Havel, T. F. (1995). Derivatives of the matrix exponential and their computation. Advances in Applied Mathematics, 16, 321-375.
    • (1995) Advances in Applied Mathematics , vol.16 , pp. 321-375
    • Najfeld, I.1    Havel, T.F.2
  • 17
    • 85153950631 scopus 로고
    • Learning local error bars for nonlinear regression
    • G. Tesauro & D. S. Touretzky & T. K. Leen (Eds.), Cambridge, MA: MIT Press
    • Nix, D. A., & Weigend, A. S. (1995). Learning local error bars for nonlinear regression. In G. Tesauro & D. S. Touretzky & T. K. Leen (Eds.), (pp. 489). Advances in neural information processing systems, 7. Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 489
    • Nix, D.A.1    Weigend, A.S.2
  • 18
    • 21444460810 scopus 로고    scopus 로고
    • Unconstrained parametrizations for variance-covariance matrices
    • Pinheiro, J. C., & Bates, D. M. (1996). Unconstrained parametrizations for variance-covariance matrices. Statistics and Computing, 6, 289-296.
    • (1996) Statistics and Computing , vol.6 , pp. 289-296
    • Pinheiro, J.C.1    Bates, D.M.2
  • 21
    • 0027306396 scopus 로고
    • Improved generalization and network pruning using adaptive Laplace regularization
    • London: Institution of Electrical Engineers
    • Williams, P. M. (1993). Improved generalization and network pruning using adaptive Laplace regularization. In: Proceedings of the third IEE international conference on artificial neural networks (pp. 76-80). London: Institution of Electrical Engineers.
    • (1993) Proceedings of the Third IEE International Conference on Artificial Neural Networks , pp. 76-80
    • Williams, P.M.1
  • 22
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • Williams, P. M. (1995). Bayesian regularization and pruning using a Laplace prior. Neural Computation, 7, 117-143.
    • (1995) Neural Computation , vol.7 , pp. 117-143
    • Williams, P.M.1
  • 23
    • 0030585112 scopus 로고    scopus 로고
    • Using neural networks to model conditional multivariate densities
    • Williams, P. M. (1996). Using neural networks to model conditional multivariate densities. Neural Computation, 8, 843-854.
    • (1996) Neural Computation , vol.8 , pp. 843-854
    • Williams, P.M.1
  • 24
    • 84898985951 scopus 로고    scopus 로고
    • Modelling seasonality and trends in daily rainfall data
    • M. I. Jordan & M. J. Kearns & S. A. Solla (Eds.), Cambridge, MA: MIT Press
    • Williams, P. M. (1998). Modelling seasonality and trends in daily rainfall data. In M. I. Jordan & M. J. Kearns & S. A. Solla (Eds.), (pp. 985). Advances in neural information processing systems, 10. Cambridge, MA: MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 985
    • Williams, P.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.