메뉴 건너뛰기




Volumn 7, Issue , 2006, Pages

A simple method to combine multiple molecular biomarkers for dichotomous diagnostic classification

Author keywords

[No Author keywords available]

Indexed keywords

DIAGNOSTIC ACCURACY; DIAGNOSTIC PERFORMANCE; DIAGNOSTIC POTENTIAL; LINEAR DISCRIMINANT FUNCTIONS; RECEIVER OPERATING CHARACTERISTIC CURVES; STATISTICAL ALGORITHM; STATISTICAL PACKAGES; STATISTICAL TECHNIQUES;

EID: 33750378314     PISSN: 14712105     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-7-442     Document Type: Article
Times cited : (17)

References (71)
  • 1
    • 21444453101 scopus 로고    scopus 로고
    • Microarray data analysis: From hypotheses to conclusions using gene expression data
    • Armstrong NJ, van de Wiel MA: Microarray data analysis: from hypotheses to conclusions using gene expression data. Cell Oncol 2004, 26(5-6):279-290.
    • (2004) Cell Oncol , vol.26 , Issue.5-6 , pp. 279-290
    • Armstrong, N.J.1    van de Wiel, M.A.2
  • 2
    • 0034090939 scopus 로고    scopus 로고
    • Making the most of microarray data
    • Gaasterland T, Bekiranov S: Making the most of microarray data. Nat Genet 2000, 24(3):204-206.
    • (2000) Nat Genet , vol.24 , Issue.3 , pp. 204-206
    • Gaasterland, T.1    Bekiranov, S.2
  • 4
    • 9244261068 scopus 로고    scopus 로고
    • Evaluating methods for classifying expression data
    • Man MZ, Dyson G, Johnson K, Liao B: Evaluating methods for classifying expression data. J Biopharm Stat 2004, 14(4):1065-1084.
    • (2004) J Biopharm Stat , vol.14 , Issue.4 , pp. 1065-1084
    • Man, M.Z.1    Dyson, G.2    Johnson, K.3    Liao, B.4
  • 6
    • 0036606753 scopus 로고    scopus 로고
    • Statistical intelligence: Effective analysis of high-density microarray data
    • Draghici S: Statistical intelligence: effective analysis of high-density microarray data. Drug Discov Today 2002, 7(11 Suppl):S55-63.
    • (2002) Drug Discov Today , vol.7 , Issue.11 SUPPL.
    • Draghici, S.1
  • 7
    • 0033967014 scopus 로고    scopus 로고
    • Microarray technology - Enhanced versatility, persistent challenge
    • Epstein CB, Butow RA: Microarray technology - enhanced versatility, persistent challenge. Curr Opin Biotechnol 2000, 11(1):36-41.
    • (2000) Curr Opin Biotechnol , vol.11 , Issue.1 , pp. 36-41
    • Epstein, C.B.1    Butow, R.A.2
  • 8
    • 0037323928 scopus 로고    scopus 로고
    • Differential analysis of DNA microarray gene expression data
    • Hatfield GW, Hung SP, Baldi P: Differential analysis of DNA microarray gene expression data. Mol Microbiol 2003, 47(4):871-877.
    • (2003) Mol Microbiol , vol.47 , Issue.4 , pp. 871-877
    • Hatfield, G.W.1    Hung, S.P.2    Baldi, P.3
  • 9
    • 0242361278 scopus 로고    scopus 로고
    • Predictive ability of DNA microarrays for cancer outcomes and correlates: An empirical assessment
    • Ntzani EE, Ioannidis JP: Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet 2003, 362(9394):1439-1444.
    • (2003) Lancet , vol.362 , Issue.9394 , pp. 1439-1444
    • Ntzani, E.E.1    Ioannidis, J.P.2
  • 10
    • 1842426553 scopus 로고    scopus 로고
    • Statistical analysis of oligonucleotide microarray data
    • Taib Z: Statistical analysis of oligonucleotide microarray data. C R Biol 2004, 327(3):175-180.
    • (2004) C R Biol , vol.327 , Issue.3 , pp. 175-180
    • Taib, Z.1
  • 11
    • 0037014601 scopus 로고    scopus 로고
    • Discriminant analysis to evaluate clustering of gene expression data
    • Mendez MA, Hodar C, Vulpe C, Gonzalez M, Cambiazo V: Discriminant analysis to evaluate clustering of gene expression data. FEBS Lett 2002, 522(1-3):24-28.
    • (2002) FEBS Lett , vol.522 , Issue.1-3 , pp. 24-28
    • Mendez, M.A.1    Hodar, C.2    Vulpe, C.3    Gonzalez, M.4    Cambiazo, V.5
  • 12
    • 4444301791 scopus 로고    scopus 로고
    • Developing optimal prediction models for cancer classification using gene expression data
    • Soukup M, Lee JK: Developing optimal prediction models for cancer classification using gene expression data. J Bioinform Comput Biol 2004, 1(4):681-694.
    • (2004) J Bioinform Comput Biol , vol.1 , Issue.4 , pp. 681-694
    • Soukup, M.1    Lee, J.K.2
  • 13
    • 21644451292 scopus 로고    scopus 로고
    • Sample size calculation for multiple testing in microarray data analysis
    • Jung SH, Bang H, Young S: Sample size calculation for multiple testing in microarray data analysis. Biostatistics 2005, 6(1):157-169.
    • (2005) Biostatistics , vol.6 , Issue.1 , pp. 157-169
    • Jung, S.H.1    Bang, H.2    Young, S.3
  • 14
    • 0033638552 scopus 로고    scopus 로고
    • Identifying combinations of cancer markers for further study as triggers of early intervention
    • Baker SG: Identifying combinations of cancer markers for further study as triggers of early intervention. Biometrics 2000, 56(4):1082-1087.
    • (2000) Biometrics , vol.56 , Issue.4 , pp. 1082-1087
    • Baker, S.G.1
  • 15
    • 0037368548 scopus 로고    scopus 로고
    • Selecting differentially expressed genes from microarray experiments
    • Pepe MS, Longton G, Anderson GL, Schummer M: Selecting differentially expressed genes from microarray experiments. Biometrics 2003, 59(1):133-142.
    • (2003) Biometrics , vol.59 , Issue.1 , pp. 133-142
    • Pepe, M.S.1    Longton, G.2    Anderson, G.L.3    Schummer, M.4
  • 16
    • 8744249121 scopus 로고    scopus 로고
    • Combining correlated diagnostic tests: Application to neuropathologic diagnosis of Alzheinner's disease
    • Xiong C, McKeel DWJ, Miller JP, Morris JC: Combining correlated diagnostic tests: application to neuropathologic diagnosis of Alzheinner's disease. Med Decis Making 2004, 24(6):659-669.
    • (2004) Med Decis Making , vol.24 , Issue.6 , pp. 659-669
    • Xiong, C.1    McKeel, D.W.J.2    Miller, J.P.3    Morris, J.C.4
  • 21
    • 2942602999 scopus 로고    scopus 로고
    • Entropy-based gene ranking without selection bias for the predictive classification of microarray data
    • Furlanello C, Serafini M, Merler S, Jurman G: Entropy-based gene ranking without selection bias for the predictive classification of microarray data. BMC Bioinformatics 2003, 4(1):54.
    • (2003) BMC Bioinformatics , vol.4 , Issue.1 , pp. 54
    • Furlanello, C.1    Serafini, M.2    Merler, S.3    Jurman, G.4
  • 22
    • 0035999981 scopus 로고    scopus 로고
    • Making sense of microarray data distributions
    • Hoyle DC, Rattray M, Jupp R, Brass A: Making sense of microarray data distributions. Bioinformatics 2002, 18(4):576-584.
    • (2002) Bioinformatics , vol.18 , Issue.4 , pp. 576-584
    • Hoyle, D.C.1    Rattray, M.2    Jupp, R.3    Brass, A.4
  • 23
    • 0036434526 scopus 로고    scopus 로고
    • Zipf's law in importance of genes for cancer classification using microarray data
    • Li W, Yang Y: Zipf's law in importance of genes for cancer classification using microarray data. J Theor Biol 2002, 219(4):539-551.
    • (2002) J Theor Biol , vol.219 , Issue.4 , pp. 539-551
    • Li, W.1    Yang, Y.2
  • 25
    • 0742269626 scopus 로고    scopus 로고
    • Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum
    • Lilien RH, Farid H, Donald BR: Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. J Comput Biol 2003, 10(6):925-946.
    • (2003) J Comput Biol , vol.10 , Issue.6 , pp. 925-946
    • Lilien, R.H.1    Farid, H.2    Donald, B.R.3
  • 26
    • 19544391863 scopus 로고    scopus 로고
    • A web-based tool for principal component and significance analysis of microarray data
    • Sharov AA, Dudekula DB, Ko MS: A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 2005.
    • (2005) Bioinformatics
    • Sharov, A.A.1    Dudekula, D.B.2    Ko, M.S.3
  • 27
    • 0036364086 scopus 로고    scopus 로고
    • Singular value decomposition regression models for classification of tumors from microarray experiments
    • Ghosh D: Singular value decomposition regression models for classification of tumors from microarray experiments. Pac Symp Biocomput 2002:18-29.
    • (2002) Pac Symp Biocomput , pp. 18-29
    • Ghosh, D.1
  • 28
    • 0034949475 scopus 로고    scopus 로고
    • SVDMAN - Singular value decomposition analysis of microarray data
    • Wall ME, Dyck PA, Brettin TS: SVDMAN - singular value decomposition analysis of microarray data. Bioinformatics 2001, 17(6):566-568.
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 566-568
    • Wall, M.E.1    Dyck, P.A.2    Brettin, T.S.3
  • 29
    • 3543076921 scopus 로고    scopus 로고
    • Application of the GA/KNN method to SELDI proteomics data
    • Li L, Umbach DM, Terry P, Taylor JA: Application of the GA/KNN method to SELDI proteomics data. Bioinformatics 2004, 20(10):1638-1640.
    • (2004) Bioinformatics , vol.20 , Issue.10 , pp. 1638-1640
    • Li, L.1    Umbach, D.M.2    Terry, P.3    Taylor, J.A.4
  • 30
    • 4744365291 scopus 로고    scopus 로고
    • Comprehensive vertical sample-based KNN/LSVM classification for gene expression analysis
    • Pan F, Wang B, Hu X, Perrizo W: Comprehensive vertical sample-based KNN/ LSVM classification for gene expression analysis. J Biomed Inform 2004, 37(4):240-248.
    • (2004) J Biomed Inform , vol.37 , Issue.4 , pp. 240-248
    • Pan, F.1    Wang, B.2    Hu, X.3    Perrizo, W.4
  • 31
    • 0742289562 scopus 로고    scopus 로고
    • Pediatric acute lymphoblastic leukemia (ALL) gene expression signatures classify an independent cohort of adult ALL patients
    • Kohlmann A, Schoch C, Schnittger S, Dugas M, Hiddemann W, Kern W, Haferlach T: Pediatric acute lymphoblastic leukemia (ALL) gene expression signatures classify an independent cohort of adult ALL patients. Leukemia 2004, 18(1):63-71.
    • (2004) Leukemia , vol.18 , Issue.1 , pp. 63-71
    • Kohlmann, A.1    Schoch, C.2    Schnittger, S.3    Dugas, M.4    Hiddemann, W.5    Kern, W.6    Haferlach, T.7
  • 32
    • 0038729565 scopus 로고    scopus 로고
    • Classification of multiple cancer types by multicategory support vector machines using gene expression data
    • Lee Y, Lee CK: Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 2003, 19(9):1132-1139.
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1132-1139
    • Lee, Y.1    Lee, C.K.2
  • 33
    • 0037232126 scopus 로고    scopus 로고
    • Analyzing microarray data using cluster analysis
    • Shannon W, Culverhouse R, Duncan J: Analyzing microarray data using cluster analysis. Pharmacogenomics 2003, 4(1):41-52.
    • (2003) Pharmacogenomics , vol.4 , Issue.1 , pp. 41-52
    • Shannon, W.1    Culverhouse, R.2    Duncan, J.3
  • 34
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005, 21(5):631-643.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 36
    • 0036868316 scopus 로고    scopus 로고
    • Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large B-cell lymphoma
    • Ando T, Suguro M, Hanai T, Kobayashi T, Honda H, Seto M: Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large B-cell lymphoma. Jpn J Cancer Res 2002, 93(11):1207-1212.
    • (2002) Jpn J Cancer Res , vol.93 , Issue.11 , pp. 1207-1212
    • Ando, T.1    Suguro, M.2    Hanai, T.3    Kobayashi, T.4    Honda, H.5    Seto, M.6
  • 37
    • 0041627900 scopus 로고    scopus 로고
    • Multiclass cancer classification using gene expression profiling and probabilistic neural networks
    • Berrar DP, Downes CS, Dubitzky W: Multiclass cancer classification using gene expression profiling and probabilistic neural networks. Pac Symp Biocomput 2003:5-16.
    • (2003) Pac Symp Biocomput , pp. 5-16
    • Berrar, D.P.1    Downes, C.S.2    Dubitzky, W.3
  • 38
    • 12244256070 scopus 로고    scopus 로고
    • Pattern identification and classification in gene expression data using an autoassociative neural network model
    • Bicciato S, Pandin M, Didone G, Di Bello C: Pattern identification and classification in gene expression data using an autoassociative neural network model. Biotechnol Bioeng 2003, 81(5):594-406.
    • (2003) Biotechnol Bioeng , vol.81 , Issue.5 , pp. 406-594
    • Bicciato, S.1    Pandin, M.2    Didone, G.3    Di Bello, C.4
  • 39
    • 4544250158 scopus 로고    scopus 로고
    • The 'subsequent artificial neural network' (SANN) approach might bring more classificatory power to ANN-based DNA microarray analyses
    • Linder R, Dew D, Sudhoff H, Theegarten D, Remberger K, Poppi SJ, Wagner M: The 'subsequent artificial neural network' (SANN) approach might bring more classificatory power to ANN-based DNA microarray analyses. Bioinformatics 2004, 20(18):3544-3552.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3544-3552
    • Linder, R.1    Dew, D.2    Sudhoff, H.3    Theegarten, D.4    Remberger, K.5    Poppi, S.J.6    Wagner, M.7
  • 40
    • 0042863923 scopus 로고    scopus 로고
    • Analysis of gene expression data using self-organizing maps
    • Toronen P, Kolehmainen M, Wong G, Castren E: Analysis of gene expression data using self-organizing maps. FEBS Lett 1999, 451(2):142-146.
    • (1999) FEBS Lett , vol.451 , Issue.2 , pp. 142-146
    • Toronen, P.1    Kolehmainen, M.2    Wong, G.3    Castren, E.4
  • 41
    • 0345166891 scopus 로고    scopus 로고
    • Detection of cancer-specific markers amid massive mass spectral data
    • Zhu W, Wang X, Ma Y, Rao M, Glimm J, Kovach JS: Detection of cancer-specific markers amid massive mass spectral data. Proc Natl Acad Sci U S A 2003, 100(25):14666-14671.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , Issue.25 , pp. 14666-14671
    • Zhu, W.1    Wang, X.2    Ma, Y.3    Rao, M.4    Glimm, J.5    Kovach, J.S.6
  • 42
    • 0344703599 scopus 로고    scopus 로고
    • Normality of oligonucleotide microarray data and implications for parametric statistical analyses
    • Giles PJ, Kipling D: Normality of oligonucleotide microarray data and implications for parametric statistical analyses. Bioinformatics 2003, 19(17):2254-2262.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2254-2262
    • Giles, P.J.1    Kipling, D.2
  • 43
    • 0037202102 scopus 로고    scopus 로고
    • Estimation of the area under the ROC curve
    • Faraggi D, Reiser B: Estimation of the area under the ROC curve. Stat Med 2002, 21(20):3093-3106.
    • (2002) Stat Med , vol.21 , Issue.20 , pp. 3093-3106
    • Faraggi, D.1    Reiser, B.2
  • 44
    • 9244231792 scopus 로고    scopus 로고
    • Significance analysis of ROC indices for comparing diagnostic markers: Applications to gene microarray data
    • Tsai CA, Chen JJ: Significance analysis of ROC indices for comparing diagnostic markers: applications to gene microarray data. J Biopharm Stat 2004, 14(4):985-1003.
    • (2004) J Biopharm Stat , vol.14 , Issue.4 , pp. 985-1003
    • Tsai, C.A.1    Chen, J.J.2
  • 45
    • 33644590867 scopus 로고    scopus 로고
    • Evaluating markers for the early detection of cancer: Overview of study designs and methods
    • Baker SG, Kramer BS, McIntosh M, Patterson BH, Shyr Y, Skates S: Evaluating markers for the early detection of cancer: overview of study designs and methods. Clin Trials 2006, 3(1):43-56.
    • (2006) Clin Trials , vol.3 , Issue.1 , pp. 43-56
    • Baker, S.G.1    Kramer, B.S.2    McIntosh, M.3    Patterson, B.H.4    Shyr, Y.5    Skates, S.6
  • 47
    • 0033912712 scopus 로고    scopus 로고
    • Comparing three-class diagnostic tests by three-way ROC analysis
    • Dreiseitl S, Ohno-Machado L, Binder M: Comparing three-class diagnostic tests by three-way ROC analysis. Med Decis Making 2000, 20(3):323-331.
    • (2000) Med Decis Making , vol.20 , Issue.3 , pp. 323-331
    • Dreiseitl, S.1    Ohno-Machado, L.2    Binder, M.3
  • 48
    • 15044364586 scopus 로고    scopus 로고
    • Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image
    • Kim TK, Kittler J: Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image. IEEE Trans Pattern Anal Mach Intell 2005, 27(3):318-327.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.3 , pp. 318-327
    • Kim, T.K.1    Kittler, J.2
  • 50
    • 7944220109 scopus 로고    scopus 로고
    • Ordered multiple-class ROC analysis with continuous measurements
    • Nakas CT, Yiannoutsos CT: Ordered multiple-class ROC analysis with continuous measurements. Stat Med 2004, 23(22):3437-3449.
    • (2004) Stat Med , vol.23 , Issue.22 , pp. 3437-3449
    • Nakas, C.T.1    Yiannoutsos, C.T.2
  • 51
    • 0033822905 scopus 로고    scopus 로고
    • ROC surface: A generalization of ROC curve analysis
    • Yang H, Carlin D: ROC surface: a generalization of ROC curve analysis. J Biopharm Stat 2000, 10(2):183-196.
    • (2000) J Biopharm Stat , vol.10 , Issue.2 , pp. 183-196
    • Yang, H.1    Carlin, D.2
  • 52
    • 13844316757 scopus 로고    scopus 로고
    • Signal in noise: Evaluating reported reproducibility of serum proteomic tests for ovarian cancer
    • Baggerly KA, Morris JS, Edmonson SR, Coombes KR: Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J Natl Cancer Inst 2005, 97(4):307-309.
    • (2005) J Natl Cancer Inst , vol.97 , Issue.4 , pp. 307-309
    • Baggerly, K.A.1    Morris, J.S.2    Edmonson, S.R.3    Coombes, K.R.4
  • 53
    • 0347181849 scopus 로고    scopus 로고
    • A data review and re-assessment of ovarian cancer serum proteomic profiling
    • Sorace JM, Zhan M: A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics 2003, 4(1):24.
    • (2003) BMC Bioinformatics , vol.4 , Issue.1 , pp. 24
    • Sorace, J.M.1    Zhan, M.2
  • 54
    • 13444283596 scopus 로고    scopus 로고
    • Bias as a threat to the validity of cancer molecular-marker research
    • Ransohoff DF: Bias as a threat to the validity of cancer molecular-marker research. Nat Rev Cancer 2005, 5(2):142-149.
    • (2005) Nat Rev Cancer , vol.5 , Issue.2 , pp. 142-149
    • Ransohoff, D.F.1
  • 55
    • 13844322072 scopus 로고    scopus 로고
    • Lessons from controversy: Ovarian cancer screening and serum proteomics
    • Ransohoff DF: Lessons from controversy: ovarian cancer screening and serum proteomics. J Natl Cancer Inst 2005, 97(4):315-319.
    • (2005) J Natl Cancer Inst , vol.97 , Issue.4 , pp. 315-319
    • Ransohoff, D.F.1
  • 56
    • 24044513009 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays
    • Michiels S, Koscielny S, Hill C: Prediction of cancer outcome with microarrays. Lancet 2005, 365(9472):1684-1685.
    • (2005) Lancet , vol.365 , Issue.9472 , pp. 1684-1685
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 57
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: A multiple random validation strategy
    • Michiels S, Koscielny S, Hill C: Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 2005, 365(9458):488-492.
    • (2005) Lancet , vol.365 , Issue.9458 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 58
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143(1):29-36.
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 59
    • 0023758502 scopus 로고
    • Estimation of probabilities using the logistic model in retrospective studies
    • Bock JR, Afifi AA: Estimation of probabilities using the logistic model in retrospective studies. Comput Biomed Res 1988, 21(5):449-470.
    • (1988) Comput Biomed Res , vol.21 , Issue.5 , pp. 449-470
    • Bock, J.R.1    Afifi, A.A.2
  • 60
    • 0027538149 scopus 로고
    • Logistic regression and discriminant analyses of hepatic failure after liver resection for carcinoma of the biliary tract
    • Nagino M, Nimura Y, Hayakawa N, Kamiya J, Kondo S, Sasaki R, Hamajima N: Logistic regression and discriminant analyses of hepatic failure after liver resection for carcinoma of the biliary tract. World J Surg 1993, 17(2):250-255.
    • (1993) World J Surg , vol.17 , Issue.2 , pp. 250-255
    • Nagino, M.1    Nimura, Y.2    Hayakawa, N.3    Kamiya, J.4    Kondo, S.5    Sasaki, R.6    Hamajima, N.7
  • 61
    • 27944493276 scopus 로고    scopus 로고
    • Classification of microarrays to nearest centroids
    • Dabney AR: Classification of microarrays to nearest centroids. Bioinformatics 2005, 21(22):4148-4154.
    • (2005) Bioinformatics , vol.21 , Issue.22 , pp. 4148-4154
    • Dabney, A.R.1
  • 62
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP: Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002, 97:77-87.
    • (2002) J Am Stat Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 63
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • Lee JW: An extensive comparison of recent classification tools applied to microarray data. Comput Stat Data Analy 2005, 48:869-885.
    • (2005) Comput Stat Data Analy , vol.48 , pp. 869-885
    • Lee, J.W.1
  • 65
    • 0037250118 scopus 로고    scopus 로고
    • Prediction of biologically significant components from microarray data: Independently Consistent Expression Discriminator (ICED)
    • Bijlani R, Cheng Y, Pearce DA, Brooks AI, Ogihara M: Prediction of biologically significant components from microarray data: Independently Consistent Expression Discriminator (ICED). Bioinformatics 2003, 19(1):62-70.
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 62-70
    • Bijlani, R.1    Cheng, Y.2    Pearce, D.A.3    Brooks, A.I.4    Ogihara, M.5
  • 66
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16(10):906-914.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 68
    • 84874644878 scopus 로고    scopus 로고
    • Broad_Institute: Cambridge
    • Broad_Institute: [http://www.broad.mit.edu/cancer/software/genecluster2/ gc2.html]. Cambridge
  • 69
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • Tibshirani P, Hastie T, Narasimhan B, Chu G: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 2002, 99(10):6567-6572.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , Issue.10 , pp. 6567-6572
    • Tibshirani, P.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 71
    • 84874659143 scopus 로고    scopus 로고
    • Stata_Corp: 7.0 College Station
    • Stata_Corp: 7.0 [http://www.stata.com]. College Station


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.