메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 3-

Learning from aggregate views

Author keywords

[No Author keywords available]

Indexed keywords

FRAMEWORK; RESTRICTION FREE AGGREGATE (RFA); TRADITIONAL PROBLEM OF LEARNING;

EID: 33749643147     PISSN: 10844627     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDE.2006.86     Document Type: Conference Paper
Times cited : (29)

References (34)
  • 1
    • 0024914229 scopus 로고
    • Security-control methods for statistical databases: A comparative study
    • N.R. Adam and J.C. Wortmann. Security-Control Methods for Statistical Databases: A Comparative Study, ACM Computing Surveys, 1989.
    • (1989) ACM Computing Surveys
    • Adam, N.R.1    Wortmann, J.C.2
  • 4
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training, COLT, 1998.
    • (1998) COLT
    • Blum, A.1    Mitchell, T.2
  • 7
    • 3142683853 scopus 로고    scopus 로고
    • Cost-based labeling of groups of mass spectra
    • L. Chen, Z. Huang and R. Ramakrishnan. Cost-based Labeling of Groups of Mass Spectra. SIGMOD, 2004.
    • (2004) SIGMOD
    • Chen, L.1    Huang, Z.2    Ramakrishnan, R.3
  • 8
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G.F. Cooper, E.Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data, Machine Learning, 1992.
    • (1992) Machine Learning
    • Cooper, G.F.1    Herskovits, E.2
  • 9
    • 33749615764 scopus 로고    scopus 로고
    • Learning with limited visibility
    • LSE-CDAM-98-0
    • Eli Dichterman. Learning with Limited Visibility. CDAM Research Report, LSE-CDAM-98-0, 1998.
    • (1998) CDAM Research Report
    • Dichterman, E.1
  • 10
    • 0035694218 scopus 로고    scopus 로고
    • Bounds for cell entries in contingency tables induced by fixed marginal totals with applications to disclosure limitation
    • A. Dobra and S.E. Fienberg. Bounds for cell entries in contingency tables induced by fixed marginal totals with applications to disclosure limitation. Stat. J. of the UNECE, 2001.
    • (2001) Stat. J. of the UNECE
    • Dobra, A.1    Fienberg, S.E.2
  • 11
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple bayesian classifier under 0-1 loss
    • P. Domingos and M. Pazzani. On the Optimality of the Simple Bayesian Classifier under 0-1 Loss, Machine Learning, 1997.
    • (1997) Machine Learning
    • Domingos, P.1    Pazzani, M.2
  • 12
    • 0034592938 scopus 로고    scopus 로고
    • Mining hight-speed data streams
    • P. Domingos and G. Hulten. Mining Hight-Speed Data Streams. SIGKDD, 2000.
    • (2000) SIGKDD
    • Domingos, P.1    Hulten, G.2
  • 14
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Y. Freund and R.E. Schapire. Experiments with a New Boosting Algorithm. ICML, 1996.
    • (1996) ICML
    • Freund, Y.1    Schapire, R.E.2
  • 17
    • 33749640381 scopus 로고    scopus 로고
    • Understanding probabilistic classifiers
    • A. Garg and D. Roth. Understanding Probabilistic Classifiers, EMCL 2001.
    • (2001) EMCL
    • Garg, A.1    Roth, D.2
  • 21
    • 0032202014 scopus 로고    scopus 로고
    • Efficient noise-tolerant learning from statistical queries
    • M. Kearns. Efficient Noise-Tolerant Learning from Statistical Queries. J. ACM, 1998.
    • (1998) J. ACM
    • Kearns, M.1
  • 23
    • 33749594309 scopus 로고    scopus 로고
    • Involving aggregate functions in multirelational search
    • A.J. Knobbe, A. Siebes and B. Marseille. Involving Aggregate Functions in Multirelational Search, PKDD, 2002.
    • (2002) PKDD
    • Knobbe, A.J.1    Siebes, A.2    Marseille, B.3
  • 24
  • 25
    • 85156193010 scopus 로고    scopus 로고
    • Knowledge-based support vector machine classifiers
    • G.M. Fung, O.L. Mangasarian and J.W. Shavlik. Knowledge-based Support Vector Machine Classifiers. NIPS 2002.
    • (2002) NIPS
    • Fung, G.M.1    Mangasarian, O.L.2    Shavlik, J.W.3
  • 26
    • 3242788638 scopus 로고    scopus 로고
    • Active + Semi-supervised learning = Robust multi-view learning
    • I. Muslea, S. Minton and C.A. Knoblock. Active + Semi-supervised Learning = Robust Multi-View Learning, ICML 2002.
    • (2002) ICML
    • Muslea, I.1    Minton, S.2    Knoblock, C.A.3
  • 27
    • 22944446870 scopus 로고    scopus 로고
    • Aggregation-based feature invention and relational concept classes
    • C. Perlich and F. Provost. Aggregation-Based Feature Invention and Relational Concept Classes, SIGKDD 2003.
    • (2003) SIGKDD
    • Perlich, C.1    Provost, F.2
  • 28
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • F. Provost and P. Domingos. Tree Induction for Probability-based Ranking, Machine Learning, 2003.
    • (2003) Machine Learning
    • Provost, F.1    Domingos, P.2
  • 29
    • 0005685575 scopus 로고
    • C4.5: Programs for machine learning
    • J.R. Quinlan. C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
    • (1993) Morgan Kaufmann
    • Quinlan, J.R.1
  • 30
    • 0031632776 scopus 로고    scopus 로고
    • Generalizing data to provide anonymity when disclosing information
    • P. Samarati and L. Sweeney. Generalizing Data to Provide Anonymity when Disclosing Information, PODS, 1998.
    • (1998) PODS
    • Samarati, P.1    Sweeney, L.2
  • 31
    • 77952412301 scopus 로고    scopus 로고
    • Bounds for cell entries in 2-way tables given conditional relation frequencies
    • A.B. Slavkovic and S.E. Fienberg. Bounds for Cell Entries in 2-Way Tables Given Conditional Relation Frequencies. PSD, 2004.
    • (2004) PSD
    • Slavkovic, A.B.1    Fienberg, S.E.2
  • 32
    • 84867590589 scopus 로고    scopus 로고
    • On improving the efficiency of the iterative proportional fitting procedure
    • Y.W. Teh and M. Welling. On Improving the Efficiency of the Iterative Proportional Fitting Procedure, AIStats,2003.
    • (2003) AIStats
    • Teh, Y.W.1    Welling, M.2
  • 33
    • 27544477092 scopus 로고    scopus 로고
    • Data mining: Practical machine learning tools with java impl
    • I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools with Java Impl., Morgan Kaufmann, 2000.
    • (2000) Morgan Kaufmann
    • Witten, I.H.1    Frank, E.2
  • 34
    • 0003259364 scopus 로고    scopus 로고
    • Obtaining probability estimates from decision trees and naïve Bayesian classifiers
    • B. Zadrozny and C. Elkan. Obtaining Probability Estimates from Decision Trees and Naïve Bayesian Classifiers, ICML, 2001.
    • (2001) ICML
    • Zadrozny, B.1    Elkan, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.