메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 882-891

Understandable models of music collections based on exhaustive feature generation with temporal statistics

Author keywords

Feature generation; Genre classification; Logistic re gression; Meta learning; Music mining

Indexed keywords

COMPUTER MUSIC; CUSTOMER SATISFACTION; FEATURE EXTRACTION; MATHEMATICAL MODELS; REGRESSION ANALYSIS; SEMANTICS; STATISTICAL METHODS;

EID: 33749540712     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1150402.1150523     Document Type: Conference Paper
Times cited : (26)

References (47)
  • 4
    • 78651517861 scopus 로고    scopus 로고
    • Tools and architecture for the evaluation of similarity measures: Case study of timbre similarity
    • J.-J. Aucouturier and F. Pachet. Tools and architecture for the evaluation of similarity measures: case study of timbre similarity. In Proc. ISMIR, 2004.
    • (2004) Proc. ISMIR
    • Aucouturier, J.-J.1    Pachet, F.2
  • 5
    • 84858820570 scopus 로고    scopus 로고
    • Anchor space for classification and similarity measurement of music
    • A. Berenzweig, D. Ellis, and S. Lawrence. Anchor space for classification and similarity measurement of music. In Proc. ICME, pages 1-29-32, 2003.
    • (2003) Proc. ICME
    • Berenzweig, A.1    Ellis, D.2    Lawrence, S.3
  • 8
    • 15544375700 scopus 로고    scopus 로고
    • Yale: Yet another learning environment - Tutorial
    • Collaborative Research Center 531, University of Dortmund, Germany
    • S. Fischer, R. Klinkenberg, I. Mierswa, and O. Ritthoff. Yale: Yet Another Learning Environment - Tutorial. Technical Report CI-136/02, Collaborative Research Center 531, University of Dortmund, Germany, 2002.
    • (2002) Technical Report , vol.CI-136-02
    • Fischer, S.1    Klinkenberg, R.2    Mierswa, I.3    Ritthoff, O.4
  • 9
    • 8744251722 scopus 로고    scopus 로고
    • Large-scale bayesian logistic regression for text categorization
    • DIMACS
    • A. Genkin, D. D. Lewis, and D. Madigan. Large-scale bayesian logistic regression for text categorization. Technical report, DIMACS, 2004.
    • (2004) Technical Report
    • Genkin, A.1    Lewis, D.D.2    Madigan, D.3
  • 10
    • 0141520565 scopus 로고    scopus 로고
    • A chorus-section detecting method for musical audio signals
    • M. Goto. A chorus-section detecting method for musical audio signals. In Proc. IEEE ICASSP, pages 437-440, 2003.
    • (2003) Proc. IEEE ICASSP , pp. 437-440
    • Goto, M.1
  • 11
    • 0037279492 scopus 로고    scopus 로고
    • Content-based audio classification and retrieval by support vector machines
    • G. Guo and S. Z. Li. Content-Based Audio Classification and Retrieval by Support Vector Machines. IEEE Transaction on Neural Networks, 14(1):209-215, 2003.
    • (2003) IEEE Transaction on Neural Networks , vol.14 , Issue.1 , pp. 209-215
    • Guo, G.1    Li, S.Z.2
  • 14
    • 84873546054 scopus 로고    scopus 로고
    • A benchmark dataset for audio classification and clustering
    • H. Homburg, I. Mierswa, B. Moeller, K. Morik, and M. Wurst. A benchmark dataset for audio classification and clustering. In Proc. ISMIR, pages 528-531, 2005.
    • (2005) Proc. ISMIR , pp. 528-531
    • Homburg, H.1    Mierswa, I.2    Moeller, B.3    Morik, K.4    Wurst, M.5
  • 16
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • S. le Cessie and J. van Houwelingen. Ridge estimators in logistic regression. Applied Statistics, 41(1):191-201, 1992.
    • (1992) Applied Statistics , vol.41 , Issue.1 , pp. 191-201
    • Le Cessie, S.1    Van Houwelingen, J.2
  • 17
    • 0035308233 scopus 로고    scopus 로고
    • Classification of general audio data for content-based retrieval
    • D. Li, I. Sethi, N. Dimitrova, and T. McGee. Classification of general audio data for content-based retrieval. Pattern Recognition Letters, 22:533-544, 2001.
    • (2001) Pattern Recognition Letters , vol.22 , pp. 533-544
    • Li, D.1    Sethi, I.2    Dimitrova, N.3    McGee, T.4
  • 18
    • 1542439119 scopus 로고    scopus 로고
    • A comparative study on content-based music genre classification
    • T. Li, M. Ogihara, and Q. Li. A comparative study on content-based music genre classification. In Proc. ACM SIGIR, pages 282-289, 2003.
    • (2003) Proc. ACM SIGIR , pp. 282-289
    • Li, T.1    Ogihara, M.2    Li, Q.3
  • 20
    • 2942720260 scopus 로고    scopus 로고
    • Features for audio and music classification
    • M. McKinney and J. Breebaart. Features for audio and music classification. In Proc. ISMIR, pages 151-158, 2003.
    • (2003) Proc. ISMIR , pp. 151-158
    • McKinney, M.1    Breebaart, J.2
  • 21
    • 33646767819 scopus 로고    scopus 로고
    • Improving music genre classification by short-time feature integration
    • A. Meng, P. Ahrendt, and J. Larsen. Improving music genre classification by short-time feature integration. In Proc. IEEE ICASSP, pages 497-500, 2005.
    • (2005) Proc. IEEE ICASSP , pp. 497-500
    • Meng, A.1    Ahrendt, P.2    Larsen, J.3
  • 22
    • 15544385732 scopus 로고    scopus 로고
    • Automatic feature extraction for classifying audio data
    • I. Mierswa and K. Morik. Automatic feature extraction for classifying audio data. Machine Learning Journal, 58:127-149, 2005.
    • (2005) Machine Learning Journal , vol.58 , pp. 127-149
    • Mierswa, I.1    Morik, K.2
  • 23
    • 0030101058 scopus 로고    scopus 로고
    • A revision of zwickers loudness model
    • B. Moore and B. Glasberg. A revision of zwickers loudness model. ACTA Acustica, 82:335-345, 1996.
    • (1996) ACTA Acustica , vol.82 , pp. 335-345
    • Moore, B.1    Glasberg, B.2
  • 24
    • 84873562110 scopus 로고    scopus 로고
    • Databionic visualization of music collections according to perceptual distance
    • F. Mörchen, A. Ultsch, M. Nöcker, and C. Stamm. Databionic visualization of music collections according to perceptual distance. In Proc. ISMIR, pages 396-403, 2005.
    • (2005) Proc. ISMIR , pp. 396-403
    • Mörchen, F.1    Ultsch, A.2    Nöcker, M.3    Stamm, C.4
  • 25
    • 33744973515 scopus 로고    scopus 로고
    • Modelling timbre distance with temporal statistics from polyphonic music
    • F. Mörchen, A. Ultsch, M. Thies, and I. Löhken. Modelling timbre distance with temporal statistics from polyphonic music. IEEE TSAP, 14(1), 2006.
    • (2006) IEEE TSAP , vol.14 , Issue.1
    • Mörchen, F.1    Ultsch, A.2    Thies, M.3    Löhken, I.4
  • 28
    • 33744781081 scopus 로고    scopus 로고
    • A Matlab toolbox to compute music similarity from audio
    • E. Pampalk. A Matlab toolbox to compute music similarity from audio. In Proc. ISMIR, 2004.
    • (2004) Proc. ISMIR
    • Pampalk, E.1
  • 30
    • 0038376759 scopus 로고    scopus 로고
    • Content-based organization and visualization of music archives
    • E. Pampalk, A. Rauber, and D. Merkl. Content-based organization and visualization of music archives. In Proc. ACM Multimedia, pages 570-579, 2002.
    • (2002) Proc. ACM Multimedia , pp. 570-579
    • Pampalk, E.1    Rauber, A.2    Merkl, D.3
  • 31
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, and A. Smola, editors, chapter 12. MIT-Press
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, chapter 12. MIT-Press, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning
    • Platt, J.1
  • 34
    • 10044236762 scopus 로고    scopus 로고
    • Multimodal video indexing: A review of the state-of-the-art
    • C. Snoek and M. Worring. Multimodal video indexing: A review of the state-of-the-art. Multimedia Tools and Applications, 25(1):5-35, 2005.
    • (2005) Multimedia Tools and Applications , vol.25 , Issue.1 , pp. 5-35
    • Snoek, C.1    Worring, M.2
  • 35
    • 84873557073 scopus 로고    scopus 로고
    • Improving content-based similarity measures by training a collaborative model
    • R. Stenzel and T. Kamps. Improving content-based similarity measures by training a collaborative model. In Proc. ISMIR 2005, pages 264-271, 2005.
    • (2005) Proc. ISMIR 2005 , pp. 264-271
    • Stenzel, R.1    Kamps, T.2
  • 36
    • 0000779360 scopus 로고
    • Dynamical systems and turbulencs
    • D. Rand and L. Young, editors, Springer
    • F. Takens. Dynamical systems and turbulencs. In D. Rand and L. Young, editors, Lecture Notes in Mathematics, volume 898, pages 366-381. Springer, 1981.
    • (1981) Lecture Notes in Mathematics , vol.898 , pp. 366-381
    • Takens, F.1
  • 37
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal Statistical Soc. B., 58:267-288, 1996.
    • (1996) J. Royal Statistical Soc. B. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 38
    • 34047203543 scopus 로고    scopus 로고
    • Marsyas: A framework for audio analysis
    • G. Tzanetakis and P. Cook. Marsyas: A framework for audio analysis. Organised Sound, 4(30):169-175, 2000.
    • (2000) Organised Sound , vol.4 , Issue.30 , pp. 169-175
    • Tzanetakis, G.1    Cook, P.2
  • 39
    • 0036648502 scopus 로고    scopus 로고
    • Musical genre classification of audio signals
    • G. Tzanetakis and P. Cook. Musical genre classification of audio signals. IEEE TSAP, 10(5):293-302, 2002.
    • (2002) IEEE TSAP , vol.10 , Issue.5 , pp. 293-302
    • Tzanetakis, G.1    Cook, P.2
  • 40
    • 0010053023 scopus 로고    scopus 로고
    • Automatic musical genre classification of audio signals
    • G. Tzanetakis, G. Essl, and P. Cook. Automatic musical genre classification of audio signals. In Proc. ISMIR, pages 205-210, 2001.
    • (2001) Proc. ISMIR , pp. 205-210
    • Tzanetakis, G.1    Essl, G.2    Cook, P.3
  • 42
    • 0002535204 scopus 로고
    • Self-organizing neural networks for visualization and classification
    • A. Ultsch. Self-organizing neural networks for visualization and classification. In Proc. Conf. German Classification Society, 1992.
    • (1992) Proc. Conf. German Classification Society
    • Ultsch, A.1
  • 43
    • 33750136404 scopus 로고    scopus 로고
    • Features and classifiers for the automatic classification of musical audio signals
    • K. West and S. Cox. Features and classifiers for the automatic classification of musical audio signals. In Proc. ISMIR, 2004.
    • (2004) Proc. ISMIR
    • West, K.1    Cox, S.2
  • 44
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. H. Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 45
    • 0141743614 scopus 로고    scopus 로고
    • Musical genre classification using support vector machines
    • C. Xu, N. Maddage, and X. Shao. Musical genre classification using support vector machines. In Proc. IEEE ICASSP, pages 429-432, 2003.
    • (2003) Proc. IEEE ICASSP , pp. 429-432
    • Xu, C.1    Maddage, N.2    Shao, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.