메뉴 건너뛰기




Volumn , Issue , 2005, Pages 396-403

Databionic visualization of music collections according to perceptual distance

Author keywords

Audio features; Clustering; Music similarity; Perception; Visualization

Indexed keywords

AUDIO DATA; AUDIO FEATURES; CLUSTERING; EMERGENT STRUCTURE; FEATURE VECTORS; HIGH-LEVEL FEATURES; LARGE MUSIC COLLECTIONS; LOW LEVEL; LOW-LEVEL FEATURES; MINING TECHNIQUES; MUSIC COLLECTION; MUSIC SIMILARITY; MUSICAL GENRE; NON-REDUNDANT; PERCEPTUAL DISTANCE; SHORT TIME WINDOWS; SOUND SPACES; TOPOGRAPHIC MAP;

EID: 84873562110     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (62)

References (30)
  • 2
    • 2942747947 scopus 로고    scopus 로고
    • Representing musical genre: A state of art
    • J.J. Aucouturier and F. Pachet. Representing musical genre: a state of art. JNMR, 31(1), 2003.
    • (2003) JNMR , vol.31 , Issue.1
    • Aucouturier, J.J.1    Pachet, F.2
  • 4
    • 0002535204 scopus 로고
    • Self-organizing neural networks for visualization and classification
    • Dortmund, Germany
    • A. Ultsch. Self-organizing neural networks for visualization and classification. In Proc. GfKl, Dortmund, Germany, 1992.
    • (1992) Proc. GfKl
    • Ultsch, A.1
  • 6
    • 24944572401 scopus 로고    scopus 로고
    • Maps for the Visualization of high dimensional Data Spaces
    • Hibikino, Japan
    • A. Ultsch. Maps for the Visualization of high dimensional Data Spaces. In Proc. WSOM, Hibikino, Japan, 2003.
    • (2003) Proc. WSOM
    • Ultsch, A.1
  • 9
    • 78651517861 scopus 로고    scopus 로고
    • Tools and architecture for the evaluation of similarity measures: Case study of timbre similarity
    • Jean-Julien Aucouturier and Francois Pachet. Tools and architecture for the evaluation of similarity measures: case study of timbre similarity. In Proc. ISMIR, 2004.
    • (2004) Proc. ISMIR
    • Aucouturier, J.1    Pachet, F.2
  • 10
    • 2942703602 scopus 로고    scopus 로고
    • On the evaluation of perceptual similarity measures for music
    • E. Pampalk, S. Dixon, and G. Widmer. On the evaluation of perceptual similarity measures for music. In Proc. DAFX, 2003.
    • (2003) Proc. DAFX
    • Pampalk, E.1    Dixon, S.2    Widmer, G.3
  • 13
    • 33744987157 scopus 로고    scopus 로고
    • Mapping music in the palm of your hand explore and discover your collection
    • Fabio Vignoli, Rob van Gulik, and Huub van deWetering. Mapping music in the palm of your hand, explore and discover your collection. In Proc. ISMIR, 2004.
    • (2004) Proc. ISMIR
    • Vignoli, F.1    Van Gulik, R.2    Van De Wetering, H.3
  • 14
    • 33744968648 scopus 로고    scopus 로고
    • Visualizing and exploring personal music libraries
    • Marc Torrens, Patrick Hertzog, and Josep Lluis Arcos. Visualizing and exploring personal music libraries. In Proc. ISMIR, 2004.
    • (2004) Proc. ISMIR
    • Torrens, M.1    Hertzog, P.2    Arcos, J.L.3
  • 17
    • 0038376759 scopus 로고    scopus 로고
    • Contentbased organization and visualization of music archives
    • ACM
    • E. Pampalk, A. Rauber, and D. Merkl. Contentbased organization and visualization of music archives. In Proc. ACM Multimedia, pages 570.579. ACM, 2002.
    • (2002) Proc. ACM Multimedia , pp. 570-579
    • Pampalk, E.1    Rauber, A.2    Merkl, D.3
  • 18
    • 33749840029 scopus 로고
    • Self organizing neural networks perform different from statistical k-means clustering
    • Basel, Suisse
    • A. Ultsch. Self organizing neural networks perform different from statistical k-means clustering. In Proc. GfKl, Basel, Suisse, 1995.
    • (1995) Proc. GfKl
    • Ultsch, A.1
  • 20
    • 33745004173 scopus 로고    scopus 로고
    • Pareto density estimation: Probability density estimation for knowledge discovery
    • Cottbus, Germany
    • A. Ultsch. Pareto Density Estimation: Probability Density Estimation for Knowledge Discovery. In Proc. GfKl, Cottbus, Germany, 2003.
    • (2003) Proc. GfKl
    • Ultsch, A.1
  • 22
    • 23944456976 scopus 로고    scopus 로고
    • Exploring music collections by browsing different views
    • E. Pampalk, S. Dixon, and G. Widmer. Exploring music collections by browsing different views. In Proc. ISMIR, 2003.
    • (2003) Proc. ISMIR
    • Pampalk, E.1    Dixon, S.2    Widmer, G.3
  • 24
    • 0035308233 scopus 로고    scopus 로고
    • Classification of general audio data for content-based retrieval
    • D. Li, I.K. Sethi, N. Dimitrova, and T. McGee. Classification of general audio data for content-based retrieval. Pattern Recognition Letters, 22:533.544, 2001.
    • (2001) Pattern Recognition Letters , vol.22 , pp. 533-544
    • Li, D.1    Sethi, I.K.2    Dimitrova, N.3    McGee, T.4
  • 25
    • 15544385732 scopus 로고    scopus 로고
    • Automatic feature extraction for classifying audio data
    • I. Mierswa and K. Morik. Automatic feature extraction for classifying audio data. Machine Learning Journal, 58:127.149, 2005.
    • (2005) Machine Learning Journal , vol.58 , pp. 127-149
    • Mierswa, I.1    Morik, K.2
  • 26
    • 0141520565 scopus 로고    scopus 로고
    • A chorus-section detecting method for musical audio signals
    • M. Goto. A chorus-section detecting method for musical audio signals. In Proc. ICASSP, pages 437. 440, 2003.
    • (2003) Proc. ICASSP , pp. 437-440
    • Goto, M.1
  • 27
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • D.A. Rand and L.S. Young, editors, Springer
    • F. Takens. Detecting strange attractors in turbulence. In D.A. Rand and L.S. Young, editors, Dynamical systems and turbulences, pages 366.381. Springer, 1981.
    • (1981) Dynamical Systems and Turbulences , pp. 366-381
    • Takens, F.1
  • 28
    • 84858820570 scopus 로고    scopus 로고
    • Anchor space for classification and similarity measurement of music
    • A. Berenzweig, D. Ellis, and S. Lawrence. Anchor space for classification and similarity measurement of music. In Proc. ICME, pages I.29.32, 2003.
    • (2003) Proc. ICME
    • Berenzweig, A.1    Ellis, D.2    Lawrence, S.3
  • 29
    • 2942720260 scopus 로고    scopus 로고
    • Features for audio and music classification
    • M.F. McKinney and J. Breebaart. Features for audio and music classification. In Proc. ISMIR, 2003.
    • (2003) Proc. ISMIR
    • McKinney, M.F.1    Breebaart, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.