메뉴 건너뛰기




Volumn 157, Issue 21, 2006, Pages 2809-2832

On constructing a fuzzy inference framework using crisp decision trees

Author keywords

Decision trees; Fuzzy inference systems; Genetic algorithms

Indexed keywords

DATABASE SYSTEMS; DECISION THEORY; FUNCTIONS; GENETIC ALGORITHMS; OPTIMIZATION; THEOREM PROVING; TREES (MATHEMATICS);

EID: 33748930981     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2006.06.002     Document Type: Article
Times cited : (45)

References (56)
  • 1
    • 33748931483 scopus 로고    scopus 로고
    • H. Al-Attar, Improving the performance of decision tree induction in non-deterministic classification domains, M.Phil. Thesis, Manchester Metropolitan University, Manchester, England, 1996.
  • 2
    • 33748939109 scopus 로고    scopus 로고
    • A. Bonarini, Evolutionary learning of fuzzy rules: competition and co-operation, in: W. Perycz (Ed.), Fuzzy Modeling Paradigms and Practice, 1995, pp. 265-283.
  • 4
    • 59949100093 scopus 로고    scopus 로고
    • C. Carter, J. Cartlett, Assessing credit card applications using machine learning, IEEE Expert, Fall Issue (1987) 71-79.
  • 5
    • 0033704190 scopus 로고    scopus 로고
    • G. Castellano, A.M. Fanelli, A staged approach for generation and compression of fuzzy classification rules, in: Proceedings FUZZ-IEEE 2000: The Ninth IEEE International Conference on Fuzzy Systems, vol. 1, 2000, pp. 42-47.
  • 6
    • 0742320762 scopus 로고    scopus 로고
    • Rule-base self-generation and simplification for data-driven fuzzy models
    • Chen M., and Linkens D. Rule-base self-generation and simplification for data-driven fuzzy models. Fuzzy Sets and Systems 142 (2003) 243-265
    • (2003) Fuzzy Sets and Systems , vol.142 , pp. 243-265
    • Chen, M.1    Linkens, D.2
  • 7
    • 0036795586 scopus 로고    scopus 로고
    • Generating fuzzy rules from training data containing noise for handling classification problems
    • Chen S.-m., Kao C.-h., and Yu C.h. Generating fuzzy rules from training data containing noise for handling classification problems. Cybernet. Systems Internat. J. 33 (2002) 723-748
    • (2002) Cybernet. Systems Internat. J. , vol.33 , pp. 723-748
    • Chen, S.-m.1    Kao, C.-h.2    Yu, C.h.3
  • 9
    • 0342923024 scopus 로고    scopus 로고
    • Identification of linguistic fuzzy models by means of genetic algorithms
    • Helleddoorn H., and Drainkov D. (Eds), Springer, Berlin
    • Cordon O., and Herrera F. Identification of linguistic fuzzy models by means of genetic algorithms. In: Helleddoorn H., and Drainkov D. (Eds). Fuzzy Model Identification Selected Approaches (1997), Springer, Berlin 215-250
    • (1997) Fuzzy Model Identification Selected Approaches , pp. 215-250
    • Cordon, O.1    Herrera, F.2
  • 11
    • 33748931167 scopus 로고    scopus 로고
    • E. Cox, Fuzzy Systems Handbook, AP Professional, 1994.
  • 12
    • 0020168472 scopus 로고
    • A general class of fuzzy operators, the Demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators
    • Dombi J. A general class of fuzzy operators, the Demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets and Systems 8 (1992) 149-163
    • (1992) Fuzzy Sets and Systems , vol.8 , pp. 149-163
    • Dombi, J.1
  • 13
    • 0019999435 scopus 로고
    • A class of fuzzy measures based on triangular norms
    • Dubois D., and Prade H. A class of fuzzy measures based on triangular norms. Internat. J. Gen. Systems 8 (1982) 43-61
    • (1982) Internat. J. Gen. Systems , vol.8 , pp. 43-61
    • Dubois, D.1    Prade, H.2
  • 16
    • 33748951962 scopus 로고    scopus 로고
    • E. Goodman, Genetic algorithms tutorial. Genetic and Evolutionary Computation Conference, GECCO-2004, 2004.
  • 17
    • 12944316442 scopus 로고    scopus 로고
    • What properties should an overall measure of test performance possess?
    • Hilden J. What properties should an overall measure of test performance possess?. Clinical Chemistry V 51 (2005) 471-472
    • (2005) Clinical Chemistry V , vol.51 , pp. 471-472
    • Hilden, J.1
  • 19
    • 0029359001 scopus 로고
    • Selecting fuzzy if-then rules for classification problems using genetic algorithms
    • Ishibuchi H., Nozaki K., Yamamoto N., and Tanaka N. Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Systems 3 3 (1995) 260-270
    • (1995) IEEE Trans. Fuzzy Systems , vol.3 , Issue.3 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, N.4
  • 20
    • 25844444373 scopus 로고
    • A genetic algorithm method for optimizing the fuzzy component of a fuzzy decision tree
    • Pal S., and Wang P. (Eds), CRC Press, Boca Raton, FL
    • Janikow C.Z. A genetic algorithm method for optimizing the fuzzy component of a fuzzy decision tree. In: Pal S., and Wang P. (Eds). Genetic Algorithms For Pattern Recognition (1994), CRC Press, Boca Raton, FL 253-281
    • (1994) Genetic Algorithms For Pattern Recognition , pp. 253-281
    • Janikow, C.Z.1
  • 21
    • 0030409030 scopus 로고    scopus 로고
    • C.Z. Janikow, Exemplar learning in fuzzy decision trees, Proceedings of FUZZ-IEEE, 1996, pp. 1500-1505.
  • 23
    • 0032591528 scopus 로고    scopus 로고
    • C.Z. Janikow, Fuzzy partitioning with FID3.1, Proceedings of the 18th International Conference of the North American Fuzzy Information Society, 1999, pp. 467-471.
  • 24
    • 4544276005 scopus 로고    scopus 로고
    • C.Z. Janikow, Fuzzy information processing NAFIPS '04, vol. 2 (27-30), 2004, pp. 877-881.
  • 25
    • 84958484352 scopus 로고    scopus 로고
    • C. Karr, L. Freeman, D. Meredith, Improved fuzzy process control of spacecraft autonomous rendezvous using a GA, SPIE, vol. 1196, Intelligent Control and Adaptive Systems, 1989, pp. 274-288.
  • 26
    • 33748938059 scopus 로고    scopus 로고
    • O. Kaynak, L. Zadeh, B. Turksen, I. Rudas, Genetic algorithms for function optimization, Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications, 1998.
  • 28
    • 33748918589 scopus 로고    scopus 로고
    • A. Mahmood, Y. Meashio, G. Singer, A genetic algorithm based fuzzy logic controller for non-linear systems, GALESIA-97 Genetic Algorithms in Engineering Systems: Innovations and Applications, Conference Publication, vol. 446, IEE, London, 1997, pp. 30-35.
  • 30
    • 0030405340 scopus 로고    scopus 로고
    • C. Marsala, B. Bouchon-Meunier, Fuzzy partitioning using mathematical morphology in a learning scheme, Proceedings of the Fifth IEEE Conference on Fuzzy Systems, 1996, pp. 1512-1517.
  • 32
    • 0042591522 scopus 로고    scopus 로고
    • A complete fuzzy decision tree technique
    • Olaru C.W. A complete fuzzy decision tree technique. Fuzzy Sets and Systems 138 (2003) 221-254
    • (2003) Fuzzy Sets and Systems , vol.138 , pp. 221-254
    • Olaru, C.W.1
  • 33
    • 33748934813 scopus 로고    scopus 로고
    • Original Owners: National Institute of Diabetes, Digestive and Kidney Diseases, Donor of Database: Vincent Sigillito (vgs @aplcen.apl.jhu.edu), Research Center, RMI Group Leader, Applied Physics Laboratory, The Johns Hopkins University (301) pp. 953-6231, Actual data source obtained from Statlog Project at ics.uci.edu in directory pub/machine-learning-databases.
  • 34
    • 0025651706 scopus 로고    scopus 로고
    • Original Owners: Dr. William H. Wolberg, University of Wisconsin Hospitals, Madison, Actual data source obtained from Statlog Project at ics.uci.edu in directory pub/machine-learning-databases, For more information see William H. Wolberg, O.L. Mangasarian, Multisurface method of pattern separation for medical diagnosis applied to breast cytology, Proc. Nat. Acad. Sci. USA 87 (1990) 9193-9196.
  • 35
    • 33748935006 scopus 로고    scopus 로고
    • Original Owners of the Cleveland Heart Data: Cleveland Clinic Foundation, Hungarian Institute of Cardiology, Budapest: Andras Janosi, M.D., Actual data source obtained from Statlog Project at ics.uci.edu in directory pub/machine-learning-databases.
  • 38
    • 0001182408 scopus 로고
    • The effect of noise on concept learning
    • Michalshi R.S., Carbirell J.G., and Mitchel T.M. (Eds), Morgan Kaufman, Los Altos, CA
    • Quinlan J. The effect of noise on concept learning. In: Michalshi R.S., Carbirell J.G., and Mitchel T.M. (Eds). Machine Learning (1987), Morgan Kaufman, Los Altos, CA 149-166
    • (1987) Machine Learning , pp. 149-166
    • Quinlan, J.1
  • 39
    • 33748920377 scopus 로고    scopus 로고
    • J. Quinlan, Inductive knowledge acquisition: a case study, Proceedings of the Second Australian Conference on Applications of Expert Systems, 1987, pp. 137-156.
  • 40
    • 33748932011 scopus 로고    scopus 로고
    • J.R. Quinlan, Probabilistic decision trees, in: Y. Kockatoft, R. Michalshi (Eds.), Machine Learning, vol. 3: An AI Approach, 1990, pp. 140-152.
  • 42
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4.5
    • Quinlan J.R. Improved use of continuous attributes in C4.5. J. Artificial Intelligence Res. 4 (1996) 77-90
    • (1996) J. Artificial Intelligence Res. , vol.4 , pp. 77-90
    • Quinlan, J.R.1
  • 43
    • 33748920218 scopus 로고    scopus 로고
    • J.R. Quinlan, Is C5.0 better than C4.5, Available: 〈http://www.rulequest.com/see5-comparison.html〉, 2002.
  • 44
    • 33748941789 scopus 로고    scopus 로고
    • J.R. Quinlan, MiniBoosting Decision Trees, AI Access Foundation, Morgan Kaufmann Publishers, Los Altos, CA, (draft) Available: 〈http://www.cse.unsw.edu.au/~quinlan/〉.
  • 45
    • 0028713899 scopus 로고    scopus 로고
    • L. Sison, E. Chong, Fuzzy modeling by induction and pruning of decision trees, IEEE Symposium on Intelligent Control U.S.A., 1994, pp. 166-171.
  • 46
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets J.A. Measuring the accuracy of diagnostic systems. Science 240 (1988) 1285-1293
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, J.A.1
  • 47
    • 0027001146 scopus 로고    scopus 로고
    • T. Tani, T. Sakoda, K. Tanaka, Fuzzy Modeling by ID3 Algorithm and its Application to Prediction of Heater Outlet Temperature, IEEE, New York, 1992, pp. 923-930.
  • 48
    • 33748920378 scopus 로고    scopus 로고
    • M. Umano, H. Okamoto, I. Hatono, H. Tamura, Generation of fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis by gas in oil, Japan-U.S.A. Symposium, 1994, pp. 1445-1450.
  • 49
    • 14844366200 scopus 로고    scopus 로고
    • G.I. Webb, K.M. Ting, On the application of ROC analysis to predict classification performance under varying class distributions, Machine Learning Journal, vol. 58(1), Kluwer Academic Publishers, Dordrecht, January 2005, pp. 25-32.
  • 50
    • 33748946778 scopus 로고    scopus 로고
    • R. Weber, Fuzzy ID3: a class of methods for automatic knowledge acquisition, Second International Conference on Fuzzy Logic and Neural Networks, Iizuka, Japan, 1992, pp. 265-268.
  • 51
    • 33748933582 scopus 로고    scopus 로고
    • R. Wiggins, A genetic approach to docking a truck, AI Expert, 1992, pp. 29-35.
  • 52
    • 0033706754 scopus 로고    scopus 로고
    • C. Wong, C. Chen, B. Lin, Design of fuzzy classification system using a genetic algorithm, FUZZ-IEEE 2000: The Ninth IEEE International Conference on Fuzzy Systems, vol. 1, 2000, pp. 297-301.
  • 53
    • 33748950117 scopus 로고    scopus 로고
    • Xpert Rule Professional Software, Attar Software Limited, Newlands House, Newlands Road, Leigh, Lancashire, WN7 4HN, UK. Available: 〈www.attar.co.uk〉.
  • 54
    • 84975316199 scopus 로고
    • On a general class of fuzzy connectives
    • Yager R. On a general class of fuzzy connectives. Fuzzy Sets and Systems 4 (1980) 235-242
    • (1980) Fuzzy Sets and Systems , vol.4 , pp. 235-242
    • Yager, R.1
  • 55
    • 0000868331 scopus 로고
    • Induction of fuzzy decision trees
    • Yuan Y., and Shaw M.J. Induction of fuzzy decision trees. Fuzzy Sets and Systems 69 (1995) 125-139
    • (1995) Fuzzy Sets and Systems , vol.69 , pp. 125-139
    • Yuan, Y.1    Shaw, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.