메뉴 건너뛰기




Volumn 6233 II, Issue , 2006, Pages

Adaptive branch and bound algorithm (ABB) for use on hyperspectral data

Author keywords

Branch and bound algorithm; Dimensionality reduction; Feature selection; Hyperspectral data; Optimal subset search

Indexed keywords

BRANCH AND BOUND ALGORITHM; DIMENSIONALITY REDUCTION; FEATURE SELECTION; HYPERSPECTRAL DATA; OPTIMAL SUBSET SEARCH;

EID: 33748641969     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.666175     Document Type: Conference Paper
Times cited : (1)

References (27)
  • 1
    • 0033364059 scopus 로고    scopus 로고
    • Invariant subpixel target identification in hyperspectral imagery
    • B. Thai, and G. Healey, "Invariant subpixel target identification in hyperspectral imagery," Proc. SPIE, vol. 3717, pp. 14-24, 1999.
    • (1999) Proc. SPIE , vol.3717 , pp. 14-24
    • Thai, B.1    Healey, G.2
  • 2
    • 3843127477 scopus 로고    scopus 로고
    • Feature selection from high-dimensional hyperspectral and polarimetric data for target detection
    • X.-W. Chen, and D. Casasent, "Feature selection from high-dimensional hyperspectral and polarimetric data for target detection," Proc. SPIE, vol. 5437, pp. 171-178, 2004.
    • (2004) Proc. SPIE , vol.5437 , pp. 171-178
    • Chen, X.-W.1    Casasent, D.2
  • 3
    • 0742268532 scopus 로고    scopus 로고
    • Feature reduction and morphological processing for hyperspectral image data
    • D. Casasent, and X.-W. Chen, "Feature reduction and morphological processing for hyperspectral image data," Applied Optics, vol. 43 (2), pp. 227-236, 2004.
    • (2004) Applied Optics , vol.43 , Issue.2 , pp. 227-236
    • Casasent, D.1    Chen, X.-W.2
  • 4
    • 0032182729 scopus 로고    scopus 로고
    • A morphological approach to automatic mine detection problems
    • J. Goutsias, and A. Banerji, "A morphological approach to automatic mine detection problems," IEEE Trans. Aerospace and Electronic Systems, vol. 34(4), pp.1085-1096, 1998
    • (1998) IEEE Trans. Aerospace and Electronic Systems , vol.34 , Issue.4 , pp. 1085-1096
    • Goutsias, J.1    Banerji, A.2
  • 5
    • 0020830112 scopus 로고
    • The K-L expansion as an effective feature ordering techniques for limited training sample size
    • Oct
    • M.J. Muasher, and D.A. Landgrebe, "The K-L expansion as an effective feature ordering techniques for limited training sample size," IEEE Trans. Geosci. Remote Sensing, vol. GE-21, pp. 438-441, Oct 1983.
    • (1983) IEEE Trans. Geosci. Remote Sensing , vol.GE-21 , pp. 438-441
    • Muasher, M.J.1    Landgrebe, D.A.2
  • 6
    • 0034934830 scopus 로고    scopus 로고
    • Detection of chicken skin tumors by multispectral imaging
    • K. Chao, P.M. Mehl, M. Kim, and Y.-R. Chen, "Detection of chicken skin tumors by multispectral imaging," Proc. SPIE, vol. 4206, pp. 214-223, 2001.
    • (2001) Proc. SPIE , vol.4206 , pp. 214-223
    • Chao, K.1    Mehl, P.M.2    Kim, M.3    Chen, Y.-R.4
  • 7
    • 0035689843 scopus 로고    scopus 로고
    • Detecting aflatoxin in single corn kernels by transmittance and reflectance spectroscopy
    • T.C. Pearson, D.T. Wicklow, E.B. Maghirang, F. Xie, and F.E. Dowell, "Detecting aflatoxin in single corn kernels by transmittance and reflectance spectroscopy," Trans. of the ASAE, vol. 44(5), pp.1247-1254, 2001.
    • (2001) Trans. of the ASAE , vol.44 , Issue.5 , pp. 1247-1254
    • Pearson, T.C.1    Wicklow, D.T.2    Maghirang, E.B.3    Xie, F.4    Dowell, F.E.5
  • 8
    • 0242313414 scopus 로고    scopus 로고
    • Hyperspectral imaging for detecting fecal and ingesta contaminants on poultry carcasses
    • B. Park, K. C. Lawrence, W. R. Windham, and R. J. Buhr, "Hyperspectral imaging for detecting fecal and ingesta contaminants on poultry carcasses," Trans. of the ASAE, vol. 45(6), pp. 2017-2026, 2002.
    • (2002) Trans. of the ASAE , vol.45 , Issue.6 , pp. 2017-2026
    • Park, B.1    Lawrence, K.C.2    Windham, W.R.3    Buhr, R.J.4
  • 9
    • 0141790755 scopus 로고    scopus 로고
    • Visible/NIR spectroscopy for characterizing fecal contamination of chicken carcasses
    • W. R. Windham, K. C. Lawrence, B. Park, R. J. Buhr, "Visible/NIR spectroscopy for characterizing fecal contamination of chicken carcasses," Trans. of the ASAE, vol. 46(3), pp. 747-751, 2003.
    • (2003) Trans. of the ASAE , vol.46 , Issue.3 , pp. 747-751
    • Windham, W.R.1    Lawrence, K.C.2    Park, B.3    Buhr, R.J.4
  • 10
    • 0345375601 scopus 로고    scopus 로고
    • Waveband selection for hyperspectral data: Optimal feature selection
    • D. Casasent, and X.-W. Chen, "Waveband selection for hyperspectral data: optimal feature selection," Proc. SPIE, vol. 5106, pp. 259-270, 2003.
    • (2003) Proc. SPIE , vol.5106 , pp. 259-270
    • Casasent, D.1    Chen, X.-W.2
  • 11
    • 2442532687 scopus 로고    scopus 로고
    • Hyperspectral feature selection and fusion for detection of chicken skin tumors
    • March
    • S. Nakariyakul, and D. Casasent, "Hyperspectral feature selection and fusion for detection of chicken skin tumors," Proc. SPIE, vol. 5271, pp. 128-139, March 2004.
    • (2004) Proc. SPIE , vol.5271 , pp. 128-139
    • Nakariyakul, S.1    Casasent, D.2
  • 12
    • 1142267434 scopus 로고    scopus 로고
    • Analysis of hyperspectral fluorescence images for poultry skin tumor inspection
    • S.G. Kong, Y.-R. Chen, I. Kim, and M. Kim, "Analysis of hyperspectral fluorescence images for poultry skin tumor inspection," Applied Optics, vol. 43(4), pp. 824-833, 2004.
    • (2004) Applied Optics , vol.43 , Issue.4 , pp. 824-833
    • Kong, S.G.1    Chen, Y.-R.2    Kim, I.3    Kim, M.4
  • 13
    • 2442545259 scopus 로고    scopus 로고
    • Classification of hyperspectral imagery for identifying fecal and ingesta contaminants
    • B. Park, W.R. Windham, K.C. Lawrence, and D.P. Smith, "Classification of hyperspectral imagery for identifying fecal and ingesta contaminants," Proc. SPIE, vol. 5271, pp. 118-127, 2004.
    • (2004) Proc. SPIE , vol.5271 , pp. 118-127
    • Park, B.1    Windham, W.R.2    Lawrence, K.C.3    Smith, D.P.4
  • 14
    • 16644371896 scopus 로고    scopus 로고
    • Hyperspectral ratio feature selection: Agricultural product inspection example
    • S. Nakariyakul, and D. Casasent, "Hyperspectral ratio feature selection: agricultural product inspection example," Proc. SPIE, vol. 5587, pp. 133-143, 2004.
    • (2004) Proc. SPIE , vol.5587 , pp. 133-143
    • Nakariyakul, S.1    Casasent, D.2
  • 16
    • 85013515810 scopus 로고
    • Comparative study of techniques for large-scale feature selection
    • E. Gelsema and L. Kanal, eds.
    • F.J. Ferri, P. Pudil, M. Hatef, and J. Kittler, "Comparative study of techniques for large-scale feature selection," Pattern Recognition in Practice IV, E. Gelsema and L. Kanal, eds., pp. 403-413, 1994.
    • (1994) Pattern Recognition in Practice IV , pp. 403-413
    • Ferri, F.J.1    Pudil, P.2    Hatef, M.3    Kittler, J.4
  • 17
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • A. Jain, and D. Zongker, "Feature selection: evaluation, application, and small sample performance," IEEE Trans. Pattern Anal. Machine Intell., vol. 19(2), pp. 153-158, 1997.
    • (1997) IEEE Trans. Pattern Anal. Machine Intell. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 18
    • 0033640901 scopus 로고    scopus 로고
    • Comparision of algorithms that select features for pattern classifiers
    • M. Kudo, and J. Sklansky, "Comparision of algorithms that select features for pattern classifiers," Pattern Recognition, vol. 33, pp. 25-41, 2000.
    • (2000) Pattern Recognition , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 19
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • A.W. Whitney, "A direct method of nonparametric measurement selection," IEEE Trans. Comput., vol. 20, pp. 1100-1103, 1971.
    • (1971) IEEE Trans. Comput. , vol.20 , pp. 1100-1103
    • Whitney, A.W.1
  • 20
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition system
    • T. Marill, and D.M. Green, "On the effectiveness of receptors in recognition system," IEEE Trans. Inform. Theory, vol. 9, pp. 917-922, 1963.
    • (1963) IEEE Trans. Inform. Theory , vol.9 , pp. 917-922
    • Marill, T.1    Green, D.M.2
  • 23
    • 0027610652 scopus 로고
    • A more efficient branch and bound algorithm for feature selection
    • B. Yu, and B. Yuan, "A more efficient branch and bound algorithm for feature selection," Pattern Recognition, vol. 26, pp. 883-889, 1993.
    • (1993) Pattern Recognition , vol.26 , pp. 883-889
    • Yu, B.1    Yuan, B.2
  • 26
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • P. Narendra, and K. Fukunaga, "A branch and bound algorithm for feature subset selection," IEEE Trans. Comput., vol. C-26, pp. 917-922, 1977.
    • (1977) IEEE Trans. Comput. , vol.C-26 , pp. 917-922
    • Narendra, P.1    Fukunaga, K.2
  • 27
    • 0038329332 scopus 로고    scopus 로고
    • An improved branch and bound algorithm for feature selection
    • X.-W. Chen, "An improved branch and bound algorithm for feature selection," Pattern Recognition Lett., vol. 24, pp. 1925-1933, 2003.
    • (2003) Pattern Recognition Lett. , vol.24 , pp. 1925-1933
    • Chen, X.-W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.