메뉴 건너뛰기




Volumn 5437, Issue , 2004, Pages 171-178

Feature selection from high-dimensional hyperspectral and polarimetric data for target detection

Author keywords

Branch and bound; Feature selection; Floating forward selection; Hyperspectral and polarimetric data; Target detection

Indexed keywords

BRANCH AND BOUND; FEATURE SELECTION; FLOATING FORWARD SELECTION; HYPERSPECTRAL AND POLARIMETRIC DATA; TARGER DETECTION;

EID: 3843127477     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.541414     Document Type: Conference Paper
Times cited : (11)

References (12)
  • 1
    • 0030733358 scopus 로고    scopus 로고
    • Automatic target detection and recognition in multiband imagery: A unified ML detection and estimation approach
    • B. Yu, L. Hoff, I. Reed, A. Chen, and L. Stotts, "Automatic target detection and recognition in multiband imagery: a unified ML detection and estimation approach," IEEE Trans. Image Processing, vol. 6, pp. 143-156, 1997.
    • (1997) IEEE Trans. Image Processing , vol.6 , pp. 143-156
    • Yu, B.1    Hoff, L.2    Reed, I.3    Chen, A.4    Stotts, L.5
  • 3
    • 33747980841 scopus 로고
    • Adaptive multispectral image processing for the detection of small targets in terrain clutter
    • O. Drummond, ed., Proc. SPIE 1698
    • L. Hoff, J. Zeidler, and C. Yerkes, "Adaptive multispectral image processing for the detection of small targets in terrain clutter," in Signal and Data Processing of Small Targets, O. Drummond, ed., Proc. SPIE 1698, pp. 100-114, 1992.
    • (1992) Signal and Data Processing of Small Targets , pp. 100-114
    • Hoff, L.1    Zeidler, J.2    Yerkes, C.3
  • 6
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • E. Baum and D. Haussler, "What size net gives valid generalization?" Neural Comput., vol. 1, pp. 151-160, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 151-160
    • Baum, E.1    Haussler, D.2
  • 9
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • P. Narendra and K. Fukunaga, A branch and bound algorithm for feature subset selection, IEEE Trans. on Computers, C-26, pp. 917-922, 1977.
    • (1977) IEEE Trans. on Computers , vol.C-26 , pp. 917-922
    • Narendra, P.1    Fukunaga, K.2
  • 10
    • 0027610652 scopus 로고    scopus 로고
    • A more efficient branch and bound algorithm for feature selection
    • B. Yu and B. Yuan. "A more efficient branch and bound algorithm for feature selection," Pattern Recognition, vol. 26, pp. 883-889, 2000.
    • (2000) Pattern Recognition , vol.26 , pp. 883-889
    • Yu, B.1    Yuan, B.2
  • 11
    • 0345376202 scopus 로고    scopus 로고
    • Mine and vehicle detection in hyperspectral data: Waveband selection
    • Automatic Target Recognition,Orlando, April
    • D. Casasent and X.-W. Chen, "Mine and vehicle detection in hyperspectral data: waveband selection," Proceedings of SPIE, Automatic Target Recognition, Orlando, April, 2003.
    • (2003) Proceedings of SPIE
    • Casasent, D.1    Chen, X.-W.2
  • 12
    • 2442516113 scopus 로고    scopus 로고
    • Aflatoxin detection in whole corn kernels using Hyperspectral methods
    • D. Casasent and X.-w. Chen, "Aflatoxin detection in whole corn kernels using Hyperspectral methods", Proc. SPIE, vol. October, 2004.
    • (2004) Proc. SPIE , vol.OCTOBER
    • Casasent, D.1    Chen, X.-W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.