메뉴 건너뛰기




Volumn 18, Issue 3, 2006, Pages 321-338

Recurrent neural networks for music computation

Author keywords

Computer music; LSTM; Music representation; Recurrent neural networks

Indexed keywords


EID: 33748574514     PISSN: 10919856     EISSN: 15265528     Source Type: Journal    
DOI: 10.1287/ijoc.1050.0131     Document Type: Article
Times cited : (48)

References (31)
  • 1
    • 0002933602 scopus 로고
    • Tracking musical beats in real time
    • International Computer Music Association, San Francisco, CA
    • Allen, P., R. Dannenberg. 1990. Tracking musical beats in real time. Internat. Comput. Music Conf., International Computer Music Association, San Francisco, CA, 140-143.
    • (1990) Internat. Comput. Music Conf. , pp. 140-143
    • Allen, P.1    Dannenberg, R.2
  • 4
    • 85159455428 scopus 로고    scopus 로고
    • A machine learning approach to musical style recognition
    • ICMA, San Francisco, CA
    • Dannenberg, R., B. Thom, D. Watson. 1997. A machine learning approach to musical style recognition. Proc. Internat. Comput. Music Conf. ICMA, San Francisco, CA, 344-347.
    • (1997) Proc. Internat. Comput. Music Conf. , pp. 344-347
    • Dannenberg, R.1    Thom, B.2    Watson, D.3
  • 7
    • 10044257370 scopus 로고    scopus 로고
    • Multi-phase learning for jazz improvisation and interaction
    • Connecticut College, New London, CT
    • Franklin, J. A. 2000. Multi-phase learning for jazz improvisation and interaction. Proc. Eighth Biennial Connecticut College Sympos. Arts and Tech. Connecticut College, New London, CT, 51-60.
    • (2000) Proc. Eighth Biennial Connecticut College Sympos. Arts and Tech. , pp. 51-60
    • Franklin, J.A.1
  • 8
    • 10044280156 scopus 로고    scopus 로고
    • Learning and improvisation
    • T. G. Dietterich, S. Becker, Z. Ghahramani, eds.. MIT Press, Cambridge, MA
    • Franklin, J. A. 2002. Learning and improvisation. T. G. Dietterich, S. Becker, Z. Ghahramani, eds. Neural Information Processing Systems 14. MIT Press, Cambridge, MA, 1377-1384.
    • (2002) Neural Information Processing Systems , vol.14 , pp. 1377-1384
    • Franklin, J.A.1
  • 10
    • 33746261949 scopus 로고    scopus 로고
    • Predicting reinforcement of pitch sequences via LSTM and TD
    • ICMA, San Francisco, CA
    • Franklin, J. A. 2004b. Predicting reinforcement of pitch sequences via LSTM and TD. Proc. 2004 Internat. Comput. Music Conf. ICMA, San Francisco, CA, 130-136.
    • (2004) Proc. 2004 Internat. Comput. Music Conf. , pp. 130-136
    • Franklin, J.A.1
  • 11
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • Gers, F. A., J. Schmidhuber, F. Cummins. 2000. Learning to forget: Continual prediction with LSTM. Neural Comput. 12(10) 2451-2471.
    • (2000) Neural Comput. , vol.12 , Issue.10 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 15
    • 0001887517 scopus 로고
    • Attractor dynamics and parallelism in a connectionist sequential machine
    • Amherst, MA
    • Jordan, M. 1986. Attractor dynamics and parallelism in a connectionist sequential machine. Proc. Eighth Annual Conf. Cognitive Sci. Soc., Amherst, MA, 531-546.
    • (1986) Proc. Eighth Annual Conf. Cognitive Sci. Soc. , pp. 531-546
    • Jordan, M.1
  • 17
    • 0002338623 scopus 로고
    • The representation of pitch in a neural net model of chord classification
    • P. M. Todd, E. D. Loy, eds.. MIT Press, Cambridge, MA
    • Laden, B., D. H. Keefe. 1991. The representation of pitch in a neural net model of chord classification. P. M. Todd, E. D. Loy, eds. Music and Connectionism. MIT Press, Cambridge, MA.
    • (1991) Music and Connectionism
    • Laden, B.1    Keefe, D.H.2
  • 18
    • 77950415684 scopus 로고
    • Resonance and the perception of musical meter
    • Large, E. W., J. F. Kolen. 1994. Resonance and the perception of musical meter. Connection Sci. 6(2 & 3) 177-208.
    • (1994) Connection Sci. , vol.6 , Issue.2-3 , pp. 177-208
    • Large, E.W.1    Kolen, J.F.2
  • 20
    • 0005613942 scopus 로고
    • Manning Publications, Greenwich, CT
    • Messick, P. 1988. Maximum MIDI. Manning Publications, Greenwich, CT.
    • (1988) Maximum MIDI
    • Messick, P.1
  • 21
    • 21844527162 scopus 로고
    • Neural network music composition by prediction: Exploring the benefits of psychophysical constraints and multiscale processing
    • Mozer, M. C. 1994. Neural network music composition by prediction: Exploring the benefits of psychophysical constraints and multiscale processing. Connection Sci. 6 247-280.
    • (1994) Connection Sci. , vol.6 , pp. 247-280
    • Mozer, M.C.1
  • 22
    • 84878121207 scopus 로고    scopus 로고
    • PG Music. Band-in-a-Box. http://www.pgmusic.com/bandbox.htm.
    • Band-in-a-Box
  • 23
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D. E. Rumelhart, J. L. McClelland, eds.. MIT Press, Cambridge, MA
    • Rumelhart, D., G. Hinton, R. Williams. 1986. Learning internal representations by error propagation. D. E. Rumelhart, J. L. McClelland, eds. Parallel Distributed Processing 1. MIT Press, Cambridge, MA, 318-362.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 25
    • 0023223978 scopus 로고
    • Toward a universal law of generalization for psychological science
    • Shepard, R. N. 1987. Toward a universal law of generalization for psychological science. Science 237 1317-1323.
    • (1987) Science , vol.237 , pp. 1317-1323
    • Shepard, R.N.1
  • 28
    • 0002244143 scopus 로고
    • A connectionist approach to algorithmic composition
    • P. M. Todd, E. D. Loy, eds.. MIT Press, Cambridge, MA
    • Todd, P. M. 1991. A connectionist approach to algorithmic composition. P. M. Todd, E. D. Loy, eds. Music and Connectionism. MIT Press, Cambridge, MA.
    • (1991) Music and Connectionism
    • Todd, P.M.1
  • 30
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • Williams, R. J., J. Peng. 1990. An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural Comput. 2(4) 490-501.
    • (1990) Neural Comput. , vol.2 , Issue.4 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 31
    • 0004162267 scopus 로고
    • A learning algorithm for continually running fully recurrent networks
    • Institute for Cognitive Science, University of California, San Diego, CA
    • Williams, R. J., D. Zipser. 1988. A learning algorithm for continually running fully recurrent networks. Technical Report ICS-8805, Institute for Cognitive Science, University of California, San Diego, CA.
    • (1988) Technical Report , vol.ICS-8805
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.