메뉴 건너뛰기




Volumn 54, Issue 10, 2006, Pages 873-884

Switching particle filters for efficient visual tracking

Author keywords

On line learning; Particle filter; Real time visual tracking

Indexed keywords

ALGORITHMS; ONLINE SYSTEMS; REAL TIME SYSTEMS; ROBUSTNESS (CONTROL SYSTEMS); SWITCHING THEORY; TRACKING (POSITION);

EID: 33748481936     PISSN: 09218890     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.robot.2006.03.004     Document Type: Article
Times cited : (21)

References (19)
  • 1
    • 0027580559 scopus 로고    scopus 로고
    • N. Gordon, J. Salmond, A. Smith, Novel approach to nonlinear non-Gaussian Bayesian state estimation, in: IEEE Proc. Radar Signal Processing, vol. 140, 1993, pp. 107-113
  • 2
    • 35348814802 scopus 로고    scopus 로고
    • M.J. Black, A.D. Jepson, Recognizing temporal trajectories using the Condensation algorithm, in: IEEE International Conference on Automatic Face and Gesture Recognition, 1998, pp. 16-21
  • 3
    • 0032136153 scopus 로고    scopus 로고
    • Condensation-conditional density propagation for visual tracking
    • Isard M., and Blake A. Condensation-conditional density propagation for visual tracking. International Journal of Computer Vision 29 1 (1998) 5-28
    • (1998) International Journal of Computer Vision , vol.29 , Issue.1 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 4
    • 0034851441 scopus 로고    scopus 로고
    • M. Isard, J. MacCormick, Bramble: A Bayesian multiple-blob tracker, in: International Conference on Computer Vision, vol. 2, 2001 pp. 34-41
  • 5
    • 0035691549 scopus 로고    scopus 로고
    • Y. Rui, Y. Chen, Better proposal distributions: Object tracking using unscented particle filter, in: IEEE Conference on Computer Vision and Pattern Recognition, 2001, pp. 786-793
  • 7
    • 3342953146 scopus 로고    scopus 로고
    • Real-time object tracking for soccer robots without color information
    • Treptow A., and Zell A. Real-time object tracking for soccer robots without color information. Robotics and Autonomous Systems (2004) 41-48
    • (2004) Robotics and Autonomous Systems , pp. 41-48
    • Treptow, A.1    Zell, A.2
  • 8
    • 10044220516 scopus 로고    scopus 로고
    • F. Wallhoff, M. Zobl, G. Rigoll, I. Potucek, Face tracking in meeting room scenerios using omnidirectional views, in: International Conference on Pattern Recognition, 2004, pp. 933-936
  • 9
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking
    • Arulampalam S., Maskell S., Gordon N., and Clapp T. A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing 50 2 (2002) 174-188
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 174-188
    • Arulampalam, S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 10
    • 10044263078 scopus 로고    scopus 로고
    • T. Bando, T. Shibata, K. Doya, S. Ishii, Switching particle filters for efficient real-time visual tracking, in: International Conference on Pattern Recognition, 2004, pp. 720-723
  • 11
    • 0033682434 scopus 로고    scopus 로고
    • D. Comaniciu, V. Ramesh, P. Meer, Real-time tracking of non-rigid objects using mean shift, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2000, pp. 142-151
  • 12
    • 33748510144 scopus 로고    scopus 로고
    • K. Nummiaro, E. Koller-Meier, L.V. Gool, Object tracking with an adaptive color-based particle filter, in: Symposium for Pattern Recognition of the DAGM, 2002, pp. 355-360
  • 13
    • 35048849881 scopus 로고    scopus 로고
    • K. Okuma, A. Taleghani, N.D. Freitas, J.J. Little, D.G. Lowe, A boosted particle filter: Multitarget detection and tracking, in: The 8th European Conference on Computer Vision, 2004, pp. 28-39
  • 14
    • 0032316680 scopus 로고    scopus 로고
    • B. North, A. Blake, Learning dynamical models using expectation-maximisation, in: International Conference on Computer Vision, 1998, pp. 384-389
  • 15
    • 0034131785 scopus 로고    scopus 로고
    • On-line EM algorithm for the normalized gaussian network
    • Sato M., and Ishii S. On-line EM algorithm for the normalized gaussian network. Neural Computation 12 2 (2000) 407-432
    • (2000) Neural Computation , vol.12 , Issue.2 , pp. 407-432
    • Sato, M.1    Ishii, S.2
  • 16
    • 0030304310 scopus 로고    scopus 로고
    • Monte carlo filter and smoother for non-Gaussian nonlinear state space models
    • Kitagawa G. Monte carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics 5 1 (1996) 1-25
    • (1996) Journal of Computational and Graphical Statistics , vol.5 , Issue.1 , pp. 1-25
    • Kitagawa, G.1
  • 17
    • 84957609680 scopus 로고    scopus 로고
    • M. Isard, A. Blake, A smoothing filter for Condensation, in: The 5th European Conference on Computer Vision, 1998, pp. 767-781
  • 18
    • 33748477265 scopus 로고    scopus 로고
    • R. van der Merwe, A. Doucet, N. de Freitas, E. Wan, The unscented particle filter, Tech. Rep., Technical Report CUED/F-INFENG/TR 380, 2000
  • 19
    • 0031347068 scopus 로고    scopus 로고
    • S. Julier, J. Uhlmann, A new extension of the kalman filter to nonlinear systems, in: International Symposium Aerospace/Defense Sensing, Simulation and Controls, 1997, pp. 182-193


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.