메뉴 건너뛰기




Volumn 3138, Issue , 2004, Pages 1-15

Finding clusters and components by unsupervised learning

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; INDEPENDENT COMPONENT ANALYSIS; LEARNING SYSTEMS; PATTERN RECOGNITION; UNSUPERVISED LEARNING;

EID: 33748412636     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-27868-9_1     Document Type: Article
Times cited : (5)

References (62)
  • 2
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • Attias, H., "Independent factor analysis", Neural Computation 11 (4), 1999, pp. 803 - 851.
    • (1999) Neural Computation , vol.11 , Issue.4 , pp. 803-851
    • Attias, H.1
  • 3
    • 0029343566 scopus 로고
    • Learning in linear neural networks: A survey
    • Baldi, P. and Hornik, K., "Learning in linear neural networks: a survey", IEEE Trans. Neural Networks 6 (4), 1995, pp. 837 - 858.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.4 , pp. 837-858
    • Baldi, P.1    Hornik, K.2
  • 4
    • 0001471775 scopus 로고
    • Unsupervised learning
    • Barlow, H., "Unsupervised learning", Neural Computation 1, 1989, pp. 295 - 311.
    • (1989) Neural Computation , vol.1 , pp. 295-311
    • Barlow, H.1
  • 5
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell, A. and Sejnowski, T., "An information-maximization approach to blind separation and blind deconvolution", Neural Computation 7, 1995, pp. 1129 - 1159.
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 7
    • 0347963789 scopus 로고    scopus 로고
    • GTM: The generative topographic mapping
    • Bishop, C., Svensen, M and Williams, C., "GTM: the generative topographic mapping", Neural Computation 10, 1998, pp. 215 - 234.
    • (1998) Neural Computation , vol.10 , pp. 215-234
    • Bishop, C.1    Svensen, M.2    Williams, C.3
  • 8
    • 0024220237 scopus 로고
    • Auto-association by multilayer Perceptrons and singular value decomposition
    • Bourlard, H. and Kamp, Y., "Auto-association by multilayer Perceptrons and singular value decomposition", Biol. Cybernetics 59, 1988, pp. 291 - 294.
    • (1988) Biol. Cybernetics , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 9
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal separation: Statistical principles
    • Cardoso, J.- F., "Blind signal separation: statistical principles", Proc. of the IEEE 9 (10), 1998, pp. 2009 - 2025.
    • (1998) Proc. of the IEEE , vol.9 , Issue.10 , pp. 2009-2025
    • Cardoso, J.F.1
  • 10
    • 0030285433 scopus 로고    scopus 로고
    • Robust neural networks with on-line learning for blind identification and blind separation of sources
    • Cichocki, A. and Unbehauen, R., "Robust neural networks with on-line learning for blind identification and blind separation of sources", IEEE Trans, on Circuits and Systems 43 (11), 1996, pp. 894 - 906.
    • (1996) IEEE Trans, on Circuits and Systems , vol.43 , Issue.11 , pp. 894-906
    • Cichocki, A.1    Unbehauen, R.2
  • 11
    • 0001109377 scopus 로고
    • Learning internal representations from gray-scale images: An example of extensional programming
    • Cottrell, G., Munro, P. and Zipser, D., "Learning internal representations from gray-scale images: an example of extensional programming", Proc. 9th Ann. Conf. of the Cognitive Science Society, 1987, pp. 462 - 473.
    • (1987) Proc. 9th Ann. Conf. of the Cognitive Science Society , pp. 462-473
    • Cottrell, G.1    Munro, P.2    Zipser, D.3
  • 12
    • 0005279515 scopus 로고    scopus 로고
    • Second-order learning in Self-Organizing Maps
    • Oja, E. and Kaski, S. (Eds.), Amsterdam: Elsevier
    • Der, R. and Herrmann, M., "Second-order learning in Self-Organizing Maps", in Oja, E. and Kaski, S. (Eds.),Kohonen Maps. Amsterdam: Elsevier, 1999, pp. 293 -302.
    • (1999) Kohonen Maps , pp. 293-302
    • Der, R.1    Herrmann, M.2
  • 16
    • 0024936898 scopus 로고
    • Adaptive network for optimal linear feature extraction
    • Washington, DC
    • Foldiak, P., "Adaptive network for optimal linear feature extraction", Proc. Int. J. Conf. on Neural Networks, Washington, DC, 1989, pp. 401 - 406.
    • (1989) Proc. Int. J. Conf. on Neural Networks , pp. 401-406
    • Foldiak, P.1
  • 17
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi, K., "On the approximate realization of continuous mappings by neural networks", Neural Networks S, 1989, pp. 183-192.
    • (1989) Neural Networks S , pp. 183-192
    • Funahashi, K.1
  • 21
    • 0002059002 scopus 로고    scopus 로고
    • Energy functions for Self-Organizing Maps
    • Oja, E. and Kaski, S. (Eds.), Amsterdam: Elsevier
    • Heskes, T., "Energy functions for Self-Organizing Maps", in Oja, E. and Kaski, S. (Eds.),Kohonen Maps. Amsterdam: Elsevier, 1999, pp. 303 - 316.
    • (1999) Kohonen Maps , pp. 303-316
    • Heskes, T.1
  • 22
    • 85153963785 scopus 로고
    • Recognizing handwritten digits using mixtures of linear models
    • G. Tesauro, D. Tourctzky, and T. Leen (Eds.), San Mateo: Kauffman
    • Hinton, G., Revow, M. and Dayan, P., "Recognizing handwritten digits using mixtures of linear models", in G. Tesauro, D. Tourctzky, and T. Leen (Eds.), Advances in Neural Information Processing Systems 6, San Mateo: Kauffman, 1995, pp. 1015 - 1022.
    • (1995) Advances in Neural Information Processing Systems , vol.6 , pp. 1015-1022
    • Hinton, G.1    Revow, M.2    Dayan, P.3
  • 24
    • 0024880831 scopus 로고
    • Multilayer Feedforward Networks are Universal Approximators
    • Hornik, M., Stinchcombe, M., and White, H., "Multilayer Feedforward Networks are Universal Approximators", Neural Networks 2, 1989, pp. 359-368.
    • (1989) Neural Networks , vol.2 , pp. 359-368
    • Hornik, M.1    Stinchcombe, M.2    White, H.3
  • 25
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for Independent Component Analysis
    • Hyvärinen, A. and Oja, E., "A fast fixed-point algorithm for Independent Component Analysis", Neural Computation 9 (7), 1997, pp. 1483 - 1492.
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 26
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for Independent Component Analysis
    • Hyvärinen, A., "Fast and robust fixed-point algorithms for Independent Component Analysis", IEEE Trans. Neural Networks 10 (3), 1999, pp. 626 - 634.
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 28
    • 0041435860 scopus 로고    scopus 로고
    • Nonlinear independent component analysis: Existence and uniqueness results
    • Hyvärinen, A. and Pajunen, P., "Nonlinear independent component analysis: existence and uniqueness results", Neural Networks 12, 1999, pp. 429 - 439.
    • (1999) Neural Networks , vol.12 , pp. 429-439
    • Hyvärinen, A.1    Pajunen, P.2
  • 29
    • 2542624430 scopus 로고    scopus 로고
    • Nonlinear dynamical factor analysis for state change detection
    • May
    • Hin, A., Valpola, H. and Oja, E., "Nonlinear dynamical factor analysis for state change detection", IEEE Trans. Neural Networks 15, No. 3, May 2004.
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.3
    • Hin, A.1    Valpola, H.2    Oja, E.3
  • 31
    • 0034153465 scopus 로고    scopus 로고
    • Nonlinear autoassociation is not equivalent to PCA
    • Japkowitz, N, Hanson, S and Gluck, A., "Nonlinear autoassociation is not equivalent to PCA", Neural Computation 12 (3), 2000, pp. 531 - 545.
    • (2000) Neural Computation , vol.12 , Issue.3 , pp. 531-545
    • Japkowitz, N.1    Hanson, S.2    Gluck, A.3
  • 32
    • 0026191274 scopus 로고
    • Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture
    • Jutten, C. and Herault, J., "Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture", Signal Processing 24, 1991, pp. 1 10.
    • (1991) Signal Processing , vol.24 , pp. 110
    • Jutten, C.1    Herault, J.2
  • 33
    • 4344702399 scopus 로고    scopus 로고
    • Advances in nonlinear blind source separation
    • Nara, Japan, April 1-4
    • Jutten, C. and Karhunen, J., "Advances in nonlinear blind source separation", Proc. 4th Int. Symp. on ICA and BSS, Nara, Japan, April 1-4, 2003, pp. 245 - 256.
    • (2003) Proc. 4th Int. Symp. on ICA and BSS , pp. 245-256
    • Jutten, C.1    Karhunen, J.2
  • 36
    • 0003410791 scopus 로고    scopus 로고
    • Berlin: Springer, 1995. 3rd Edition
    • Kohonen, T., Self-Organizing Maps. Berlin: Springer, 1995. 3rd Edition, 2001.
    • (2001) Self-Organizing Maps
    • Kohonen, T.1
  • 38
    • 0015749493 scopus 로고
    • Self-organization of orientation sensitive cells in the striate cortex
    • von der Malsburg, C., "Self-organization of orientation sensitive cells in the striate cortex", Kybernetik 14, 1973, pp. 85 - 100.
    • (1973) Kybernetik , vol.14 , pp. 85-100
    • Von Der Malsburg, C.1
  • 39
    • 0020464111 scopus 로고
    • A Simplified Neuron Model as a Principal Components Analyzer
    • Oja, E. "A Simplified Neuron Model as a Principal Components Analyzer", J. Math. Biol. 15, 1982, pp. 267-273.
    • (1982) J. Math. Biol. , vol.15 , pp. 267-273
    • Oja, E.1
  • 41
    • 0000621817 scopus 로고
    • Data Compression, Feature Extraction, and Autoassociation in Feedforward Neural Networks
    • Espoo, Finland, June 24 - 28
    • Oja, E., "Data Compression, Feature Extraction, and Autoassociation in Feedforward Neural Networks", Proc. 1CANN-91, Espoo, Finland, June 24 - 28, 1991, pp. 737 - 745.
    • (1991) Proc. 1CANN-91 , pp. 737-745
    • Oja, E.1
  • 42
    • 0026954958 scopus 로고
    • Principal Components, Minor Components, and Linear Neural Networks
    • Oja, E., "Principal Components, Minor Components, and Linear Neural Networks", Neural Networks 5, 1992, pp. 927 - 935.
    • (1992) Neural Networks , vol.5 , pp. 927-935
    • Oja, E.1
  • 43
    • 0343416807 scopus 로고    scopus 로고
    • The nonlinear PCA learning rule in independent component analysis
    • Oja, E., "The nonlinear PCA learning rule in independent component analysis", Neurocomputing 17 (1), 1997, 25 - 46.
    • (1997) Neurocomputing , vol.17 , Issue.1 , pp. 25-46
    • Oja, E.1
  • 44
    • 0004249746 scopus 로고    scopus 로고
    • Oja, E. and Kaski, S. (Eds.), Amsterdam: Elsevier
    • Oja, E. and Kaski, S. (Eds.),Kohonen Maps. Amsterdam: Elsevier, 1999.
    • (1999) Kohonen Maps
  • 45
    • 0030608086 scopus 로고
    • Neural fitting: Robustness by anti-Hebbian learning
    • Oja, E. and Wang, L., "Neural fitting: robustness by anti-Hebbian learning", Neurocomputing 12, 1976, pp. 155 - 170.
    • (1976) Neurocomputing , vol.12 , pp. 155-170
    • Oja, E.1    Wang, L.2
  • 46
    • 0035448026 scopus 로고    scopus 로고
    • Blind separation of instantaneous mixtures of nonstationary sources
    • Pham, D. and Cardoso, J-P., "Blind separation of instantaneous mixtures of nonstationary sources", IEEE Trans. Signal Proc. 49, 2001, pp. 1837 - 1848.
    • (2001) IEEE Trans. Signal Proc. , vol.49 , pp. 1837-1848
    • Pham, D.1    Cardoso, J.-P.2
  • 48
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear gaussian models
    • Roweis, S. and Ghahramani, Z., "A unifying review of linear gaussian models", Neural Computation 11 (2), 1999, pp. 305 - 346.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 305-346
    • Roweis, S.1    Ghahramani, Z.2
  • 49
    • 84956074083 scopus 로고
    • A self-organizing network for Principal Component Analysis
    • Rubner, J. and Tavan, P., "A self-organizing network for Principal Component Analysis", Europhysics Letters 10 (7), 1989, pp. 693 - 698.
    • (1989) Europhysics Letters , vol.10 , Issue.7 , pp. 693-698
    • Rubner, J.1    Tavan, P.2
  • 50
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layered linear feedforward network
    • Sanger, T., "Optimal unsupervised learning in a single-layered linear feedforward network", Neural Networks 2, 1989, pp. 459 - 473.
    • (1989) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.1
  • 52
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., smola, A. J. and Müller, K.-R., "Nonlinear component analysis as a kernel eigenvalue problem", Neural Comput. 10, 1998, 1299 - 1319.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 55
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • Tipping, M. E. and Bishop, C. M., "Mixtures of probabilistic principal component analyzers", Neural Computation 11 (2), 1999, pp. 443 - 482.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 56
    • 0012254062 scopus 로고    scopus 로고
    • Bayesian ensemble learning for nonlinear factor analysis
    • Espoo, D.Sc. Thesis, Helsinki University of Technology
    • Valpola, II., "Bayesian ensemble learning for nonlinear factor analysis", Ado. Polyt. Scand. Ma 108, Espoo, 2000. D.Sc. Thesis, Helsinki University of Technology.
    • (2000) Ado. Polyt. Scand. Ma 108
    • Valpola, I.I.1
  • 57
    • 0038036528 scopus 로고    scopus 로고
    • Nonlinear blind source separation by variational Bayesian learning
    • Valpola, H., Oja, E., Hin, A., Honkela, A. and KArhunen, J., "Nonlinear blind source separation by variational Bayesian learning", IEICE Trans. E86-A, 2003, pp. 532 - 541.
    • (2003) IEICE Trans. E86-A , pp. 532-541
    • Valpola, H.1    Oja, E.2    Hin, A.3    Honkela, A.4    Karhunen, J.5
  • 59
    • 0003036940 scopus 로고    scopus 로고
    • Topology preservation in Self - Organizing Maps
    • Oja, E. and Kaski, S. (Eds.), Amsterdam: Elsevier
    • Villmann, T., "Topology preservation in Self - Organizing Maps". In Oja, E. and Kaski, S. (Eds.),Kohonen Maps. Amsterdam: Elsevier, 1999, pp. 267 - 292.
    • (1999) Kohonen Maps , pp. 267-292
    • Villmann, T.1
  • 60
    • 0030094135 scopus 로고    scopus 로고
    • A unified neural bigradient algorithm for robust PC A and MCA
    • Wang, L. and Karhunen, J., " A unified neural bigradient algorithm for robust PC A and MCA", Int. J. of Neural Systems 7 (1), 1996, pp. 53 - 67.
    • (1996) Int. J. of Neural Systems , vol.7 , Issue.1 , pp. 53-67
    • Wang, L.1    Karhunen, J.2
  • 62
    • 0033716741 scopus 로고    scopus 로고
    • Temporal BYY learning for state space approach, hidden Markov model, and blind source separation
    • Xu, L., "Temporal BYY learning for state space approach, hidden Markov model, and blind source separation", IEEE Trans. Signal Proc. 48, 2000, pp. 2132 - 2144.
    • (2000) IEEE Trans. Signal Proc. , vol.48 , pp. 2132-2144
    • Xu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.