메뉴 건너뛰기




Volumn 15, Issue 3, 2004, Pages 559-575

Nonlinear dynamical factor analysis for state change detection

Author keywords

Change detection; Independent component analysis; Nonlinear state space model; Variational Bayesian learning

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; DIFFERENTIAL EQUATIONS; INDEPENDENT COMPONENT ANALYSIS; NEURAL NETWORKS; STATE SPACE METHODS;

EID: 2542624430     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2004.826129     Document Type: Article
Times cited : (19)

References (45)
  • 2
    • 0002376944 scopus 로고    scopus 로고
    • ICA, graphical models and variational methods
    • S. Roberts and R. Everson, Eds: Cambridge Univ. Press
    • H. Attias, "ICA, graphical models and variational methods," in Independent Component Analysis: Principles and Practice, S. Roberts and R. Everson, Eds: Cambridge Univ. Press, 2001, pp. 95-112.
    • (2001) Independent Component Analysis: Principles and Practice , pp. 95-112
    • Attias, H.1
  • 5
    • 3543070663 scopus 로고    scopus 로고
    • Fisher scoring and a mixture of modes approach for approximate inference and learning in nonlinear state space models
    • M. Kearns, S. Solla, and D. Cohn, Eds. Cambridge, MA: MIT Press
    • T. Briegel and V. Tresp, "Fisher scoring and a mixture of modes approach for approximate inference and learning in nonlinear state space models," in Advances in Neural Information Processing Systems 11, M. Kearns, S. Solla, and D. Cohn, Eds. Cambridge, MA: MIT Press, pp. 403-409.
    • (1999) Advances in Neural Information Processing Systems 11 , pp. 403-409
    • Briegel, T.1    Tresp, V.2
  • 10
    • 0029714384 scopus 로고    scopus 로고
    • Neural networks for time series processing
    • G. Dorffner, "Neural networks for time series processing," Neural Network World, vol. 6, no. 4, pp. 447-468, 1996.
    • (1996) Neural Network World , vol.6 , Issue.4 , pp. 447-468
    • Dorffner, G.1
  • 12
    • 0342762071 scopus 로고    scopus 로고
    • Deterministic nonlinear observer-based approaches to fault diagnosis: A survey
    • E. A. García and P. M. Frank, "Deterministic nonlinear observer-based approaches to fault diagnosis: A survey," Contr. Eng. Practice, vol. 5, no. 5, pp. 663-670, 1997.
    • (1997) Contr. Eng. Practice , vol.5 , Issue.5 , pp. 663-670
    • García, E.A.1    Frank, P.M.2
  • 13
    • 84899008192 scopus 로고    scopus 로고
    • Learning nonlinear dynamical systems using an EM algorithm
    • M. Kearns, S. Solla, and D. Cohn, Eds. Cambridge, MA: The MIT Press
    • Z. Ghahramani and S. Roweis, "Learning nonlinear dynamical systems using an EM algorithm," in Advances in Neural Information Processing Systems 11, M. Kearns, S. Solla, and D. Cohn, Eds. Cambridge, MA: The MIT Press, 1999, pp. 431-437.
    • (1999) Advances in Neural Information Processing Systems 11 , pp. 431-437
    • Ghahramani, Z.1    Roweis, S.2
  • 18
  • 21
    • 0038173234 scopus 로고    scopus 로고
    • Accelerating cyclic update algorithms for parameter estimation by pattern searches
    • A. Honkela, H. Valpola, and J. Karhunen, "Accelerating cyclic update algorithms for parameter estimation by pattern searches," Neural Processing Lett., vol. 17, no. 2, pp. 191-203, 2003.
    • (2003) Neural Processing Lett. , vol.17 , Issue.2 , pp. 191-203
    • Honkela, A.1    Valpola, H.2    Karhunen, J.3
  • 25
    • 0002144623 scopus 로고    scopus 로고
    • Bayesian nonlinear independent component analysis by multi-layer perceptrons
    • M. Girolami, Ed, Berlin: Springer-Verlag
    • H. Lappalainen and A. Honkela, "Bayesian nonlinear independent component analysis by multi-layer perceptrons," in Advances in Independent Component Analysis, M. Girolami, Ed, Berlin: Springer-Verlag, 2000, pp. 93-121.
    • (2000) Advances in Independent Component Analysis , pp. 93-121
    • Lappalainen, H.1    Honkela, A.2
  • 27
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. J. C. MacKay, "Bayesian interpolation," Neural Comput., vol. 4, no. 3, pp. 415-447, 1992.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 28
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • ____, "A practical Bayesian framework for backpropagation networks," Neural Comput., vol. 4, no. 3, pp. 448-472, 1992.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 29
    • 0002741125 scopus 로고    scopus 로고
    • Ensemble learning for blind source separation
    • S. Roberts and R. Everson, Eds: Cambridge Univ. Press
    • J. Miskin and D. J. C. MacKay, "Ensemble learning for blind source separation," in Independent Component Analysis: Principles and Practice, S. Roberts and R. Everson, Eds: Cambridge Univ. Press, 2001, pp. 209-233.
    • (2001) Independent Component Analysis: Principles and Practice , pp. 209-233
    • Miskin, J.1    MacKay, D.J.C.2
  • 31
    • 2542631659 scopus 로고    scopus 로고
    • An EM algorithm for identification of nonlinear dynamical systems
    • S. Haykin, Ed. New York: Wiley
    • S. Roweis and Z. Ghahramani, "An EM algorithm for identification of nonlinear dynamical systems," in Kalman Filtering and Neural Networks, S. Haykin, Ed. New York: Wiley, 2001, pp. 175-220.
    • (2001) Kalman Filtering and Neural Networks , pp. 175-220
    • Roweis, S.1    Ghahramani, Z.2
  • 33
    • 0018995410 scopus 로고
    • Detecting change in a time-series
    • J. Segen and A. C. Sanderson, "Detecting change in a time-series," IEEE Trans. Inform. Theory, vol. IT-26, pp. 249-255, 1980.
    • (1980) IEEE Trans. Inform. Theory , vol.IT-26 , pp. 249-255
    • Segen, J.1    Sanderson, A.C.2
  • 34
    • 0005811435 scopus 로고    scopus 로고
    • Espoo, Finland: Publications in Computer and Information Science A59, Lab. Computer and Information Science, Helsinki Univ. Technol.
    • H. Valpola, Unsupervised Learning of Nonlinear Dynamic State-Space Models, Espoo, Finland: Publications in Computer and Information Science A59, Lab. Computer and Information Science, Helsinki Univ. Technol., 2000.
    • (2000) Unsupervised Learning of Nonlinear Dynamic State-Space Models
    • Valpola, H.1
  • 37
    • 0038132747 scopus 로고    scopus 로고
    • An unsupervised ensemble learning method for nonlinear dynamic state-space models
    • H. Valpola and J. Karhunen, "An unsupervised ensemble learning method for nonlinear dynamic state-space models," Neural Comput., vol. 14, no. 11, pp. 2647-2692, 2002.
    • (2002) Neural Comput. , vol.14 , Issue.11 , pp. 2647-2692
    • Valpola, H.1    Karhunen, J.2
  • 40
    • 0346724352 scopus 로고    scopus 로고
    • Hierarchical models of variance sources
    • H. Valpola and M. Harva, and J. Karhunen, "Hierarchical models of variance sources," Signal Process., vol. 84, no. 2, pp. 267-282, 2004.
    • (2004) Signal Process. , vol.84 , Issue.2 , pp. 267-282
    • Valpola, H.1    Harva, M.2    Karhunen, J.3
  • 43
    • 0005943476 scopus 로고    scopus 로고
    • Dual extended Kalman filter methods
    • S. Haykin, Ed. New York: Wiley
    • E. Wan and A. Nelson, "Dual extended Kalman filter methods," in Kalman Filtering and Neural Networks, S. Haykin, Ed. New York: Wiley, 2001, pp. 123-173.
    • (2001) Kalman Filtering and Neural Networks , pp. 123-173
    • Wan, E.1    Nelson, A.2
  • 45
    • 0031153979 scopus 로고    scopus 로고
    • Process monitoring using nonlinear statistical techniques
    • J. Zhang, E. B. Martin, and A. J. Morris, "Process monitoring using nonlinear statistical techniques," Chem. Eng. J., vol. 67, no. 3, pp. 181-189, 1997.
    • (1997) Chem. Eng. J. , vol.67 , Issue.3 , pp. 181-189
    • Zhang, J.1    Martin, E.B.2    Morris, A.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.