메뉴 건너뛰기




Volumn 5, Issue 1, 2006, Pages

Using complexity for the estimation of Bayesian networks

Author keywords

Bayes information criteria; Directed acyclic graph; Gene expression data; Gene regulatory network; Model selection

Indexed keywords

ARTICLE; BAYES THEOREM; FEASIBILITY STUDY; GENE CONSTRUCT; GENE CONTROL; GENE INTERACTION; GENE STRUCTURE; GENETIC ANALYSIS; MATHEMATICAL MODEL; SCORING SYSTEM; STATISTICAL ANALYSIS; YEAST; ALGORITHM; BIOLOGICAL MODEL; BIOLOGY; COMPUTER SIMULATION; DNA MICROARRAY; METHODOLOGY; PROBABILITY; SIGNAL TRANSDUCTION; STATISTICAL MODEL;

EID: 33748343430     PISSN: 15446115     EISSN: 15446115     Source Type: Journal    
DOI: 10.2202/1544-6115.1208     Document Type: Article
Times cited : (7)

References (19)
  • 2
    • 0000501656 scopus 로고
    • Information theory and the maximum likelihood principle
    • B.N.Petrov and F.Cz̀aki (Eds.)
    • Akaike, H. (1973). Information theory and the maximum likelihood principle. In B.N.Petrov and F.Cz̀aki (Eds.), 2nd International Symphosium in Information Theory.
    • (1973) 2nd International Symphosium in Information Theory
    • Akaike, H.1
  • 3
    • 33847187387 scopus 로고    scopus 로고
    • Using a Bayesian posterior density in the design of perturbation experiments for network reconstruction
    • Almudevar, A. and P. Salzman (2005). Using a Bayesian posterior density in the design of perturbation experiments for network reconstruction. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2 (3), 223-229.
    • (2005) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.2 , Issue.3 , pp. 223-229
    • Almudevar, A.1    Salzman, P.2
  • 4
    • 0007121376 scopus 로고    scopus 로고
    • Model selection with data-oriented penalty
    • Bai, Z., C. Rao, and Y. Wu (1999). Model selection with data-oriented penalty. J. Statist. Inference and Planning 77 (1), 103-117.
    • (1999) J. Statist. Inference and Planning , vol.77 , Issue.1 , pp. 103-117
    • Bai, Z.1    Rao, C.2    Wu, Y.3
  • 5
    • 20744440332 scopus 로고    scopus 로고
    • Inferring genetic regulatory logic from expression data
    • Bulashevska, S. and R. Eils (2005). Inferring genetic regulatory logic from expression data. Bioinformatics 21 (11), 2706-2713.
    • (2005) Bioinformatics , vol.21 , Issue.11 , pp. 2706-2713
    • Bulashevska, S.1    Eils, R.2
  • 7
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about Bayesian network structure: A Bayesian approach to structure discovery in Bayesian networks
    • Friedman, N. and D. Koller (2003). Being Bayesian about Bayesian network structure: A Bayesian approach to structure discovery in Bayesian networks. Machine Learning 50 (1-2), 95-125.
    • (2003) Machine Learning , vol.50 , Issue.1-2 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 8
    • 0017127311 scopus 로고
    • Coordinate regulation of the synthesis of eukaryotic ribosomal proteins
    • Gorenstein, C. and J. R. Warner (1976). Coordinate regulation of the synthesis of eukaryotic ribosomal proteins. Proceedings of the National Academy of Sciences 73 (5), 1547-1551.
    • (1976) Proceedings of the National Academy of Sciences , vol.73 , Issue.5 , pp. 1547-1551
    • Gorenstein, C.1    Warner, J.R.2
  • 9
    • 22844441552 scopus 로고    scopus 로고
    • Reverse engineering gene regulatory networks
    • Hartemink, A. (2005). Reverse engineering gene regulatory networks. Nature Biotechnology 23 (5), 554-555.
    • (2005) Nature Biotechnology , vol.23 , Issue.5 , pp. 554-555
    • Hartemink, A.1
  • 10
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • R. Altman, A. K. Dunker, L. Hunter, K. Lauderdale, and T. Klein (Eds.), World Scientific: New Jersey
    • Hartemink, A., D. Gifford, T. Jaakkola, and R. Young (2002). Combining location and expression data for principled discovery of genetic regulatory network models. In R. Altman, A. K. Dunker, L. Hunter, K. Lauderdale, and T. Klein (Eds.), Pacific Symposium on Biocomputing, pp. 437-449. World Scientific: New Jersey.
    • (2002) Pacific Symposium on Biocomputing , pp. 437-449
    • Hartemink, A.1    Gifford, D.2    Jaakkola, T.3    Young, R.4
  • 13
    • 0032579887 scopus 로고    scopus 로고
    • The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae
    • Planta, R. and W. Mager (1998). The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast 14, 471-477.
    • (1998) Yeast , vol.14 , pp. 471-477
    • Planta, R.1    Mager, W.2
  • 15
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6 (2), 461-464.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 17
    • 0036489055 scopus 로고    scopus 로고
    • Adaptive model selection
    • Shen, X. and J. Ye (2002). Adaptive model selection. J. Amer. Statist. Assoc. 97, 210-221.
    • (2002) J. Amer. Statist. Assoc. , vol.97 , pp. 210-221
    • Shen, X.1    Ye, J.2
  • 19
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • July.
    • Yu, J., V. A. A. Smith, P. P. P. Wang, A. J. J. Hartemink, and E. D. D. Jarvis (2004, July). Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594-3603.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.A.2    Wang, P.P.P.3    Hartemink, A.J.J.4    Jarvis, E.D.D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.