메뉴 건너뛰기




Volumn 60, Issue 3, 2006, Pages 233-240

Penalized splines and reproducing kernel methods

Author keywords

Bioinformatics; Classification; Data mining; Generalized additive models; Kernel machines; Machine learning; Mixed models; Reproducing kernel Hilbert spaces; Semi parametric regression; Statistical learning; Supervised learning; Support vector machines

Indexed keywords


EID: 33747477568     PISSN: 00031305     EISSN: None     Source Type: Journal    
DOI: 10.1198/000313006X124541     Document Type: Article
Times cited : (42)

References (44)
  • 5
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. (1998), "A Tutorial on Support Vector Machines for Pattern Recognition," Data Mining and Knowledge Discovery, 2, 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.1
  • 9
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyand, J., and Speed, T. P. (2002), "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, 97, 77-87.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 10
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with b-splines and penalties
    • Eilers, P. H. C., and Marx, B. D. (1996), "Flexible Smoothing with B-splines and Penalties" (with discussion), Statistical Science, 11, 89-121.
    • (1996) Statistical Science , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 12
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Fine, S., and Scheinberg, K. (2001), "Efficient SVM Training Using Low-Rank Kernel Representations," Journal of Machine Learning Research, 2, 243-264.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 14
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi, R., Jones, M., and Poggio, T. (1995), "Regularization Theory and Neural Networks Architectures," Neural Computation, 7, 219-269.
    • (1995) Neural Computation , vol.7 , pp. 219-269
    • Girosi, R.1    Jones, M.2    Poggio, T.3
  • 16
    • 0011031587 scopus 로고    scopus 로고
    • Spline adaptation in extended linear models
    • Hansen, M. H., and Kooperberg, C. (2002), "Spline Adaptation in Extended Linear Models" (with discussion), Statistical Science, 17, 2-51.
    • (2002) Statistical Science , vol.17 , pp. 2-51
    • Hansen, M.H.1    Kooperberg, C.2
  • 18
    • 33747466944 scopus 로고    scopus 로고
    • available online is cran.r-project.org
    • _ (2005), gam 0. 94, R package, available online is cran.r-project.org.
    • (2005) Gam 0. 94, R Package
  • 20
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • eds. B. Scholkopf, C. Burges, and A. Smola, Cambridge, MA: MIT Press
    • Joachims, T. (1998), "Making Large-Scale SVM Learning Practical," in Advances in Kernel Methods-Support Vector Learning, eds. B. Scholkopf, C. Burges, and A. Smola, Cambridge, MA: MIT Press.
    • (1998) Advances in Kernel Methods-support Vector Learning
    • Joachims, T.1
  • 22
    • 33747496466 scopus 로고    scopus 로고
    • Structured multicategory support vector machines with ANOVA decomposition
    • to appear
    • Lee, Y., Kim, Y., Lee, S., and Koo, J.-Y. (2006), "Structured Multicategory Support Vector Machines with ANOVA Decomposition," Biometrika, to appear.
    • (2006) Biometrika
    • Lee, Y.1    Kim, Y.2    Lee, S.3    Koo, J.-Y.4
  • 23
    • 0036161029 scopus 로고    scopus 로고
    • Support vector machines for classification in nonstandard situations
    • Lin, Y., Lee, Y., and Wahba, G. (2002), "Support Vector Machines for Classification in Nonstandard Situations," Machine Learning, 46, 191-202.
    • (2002) Machine Learning , vol.46 , pp. 191-202
    • Lin, Y.1    Lee, Y.2    Wahba, G.3
  • 24
    • 0036643043 scopus 로고    scopus 로고
    • Statistical properties and adaptive tuning of support vector machines
    • Lin, Y., Wahba, G., Zhang, H., and Lee, Y. (2002), "Statistical Properties and Adaptive Tuning of Support Vector Machines," Machine Learning, 48, 115-136.
    • (2002) Machine Learning , vol.48 , pp. 115-136
    • Lin, Y.1    Wahba, G.2    Zhang, H.3    Lee, Y.4
  • 25
    • 33747509810 scopus 로고    scopus 로고
    • Component selection and smoothing in smoothing spline analysis of variance models
    • Lin, Y., and Zhang, H. H. (2006), "Component Selection and Smoothing in Smoothing Spline Analysis of Variance Models," The Annals of Statistics, 34, 5.
    • (2006) The Annals of Statistics , vol.34 , pp. 5
    • Lin, Y.1    Zhang, H.H.2
  • 26
    • 0032493547 scopus 로고    scopus 로고
    • Direct generalized additive modeling with penalized likelihood
    • Marx, B. D., and Eilers, P. H. C. (1998), "Direct Generalized Additive Modeling With Penalized Likelihood," Computational Statistics and Data Analysis, 28, 193-209.
    • (1998) Computational Statistics and Data Analysis , vol.28 , pp. 193-209
    • Marx, B.D.1    Eilers, P.H.C.2
  • 29
    • 0038182862 scopus 로고
    • Discussion of "some aspects of the spline smoothing approach to nonparametric regression curve fitting" by B. W. Silverman
    • Parker, R. L., and Rice, J. A. (1985), Discussion of "Some Aspects of the Spline Smoothing Approach to Nonparametric Regression Curve Fitting" by B. W. Silverman, Journal of the Royal Statistical Society, Series B, 47, 40-42.
    • (1985) Journal of the Royal Statistical Society, Series B , vol.47 , pp. 40-42
    • Parker, R.L.1    Rice, J.A.2
  • 30
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • eds. B. Scholkopf, C. Burges, and A. Smola, Cambridge, MA: MIT Press
    • Platt, J. (1998), "Fast Training of Support Vector Machines Using Sequential Minimal Optimization," in Advances in Kernel Methods-Support Vector Learning, eds. B. Scholkopf, C. Burges, and A. Smola, Cambridge, MA: MIT Press.
    • (1998) Advances in Kernel Methods-support Vector Learning
    • Platt, J.1
  • 34
    • 0041151310 scopus 로고
    • Monosplines and quadrature formulae
    • ed. T. Greville, Madison, WI: University of Wisconsin Press
    • Schoenberg, I. (1969), "Monosplines and Quadrature Formulae," in Theory and Application of Spline Functions, ed. T. Greville, Madison, WI: University of Wisconsin Press.
    • (1969) Theory and Application of Spline Functions
    • Schoenberg, I.1
  • 38
    • 0346862811 scopus 로고
    • The use of polynomial splines and their tensor products in multivariate function estimation
    • Stone, C. J. (1994), "The Use of Polynomial Splines and their Tensor Products in Multivariate Function Estimation" (with discussion), The Annals of Statistics, 22, 118-184.
    • (1994) The Annals of Statistics , vol.22 , pp. 118-184
    • Stone, C.J.1
  • 39
    • 0033440749 scopus 로고    scopus 로고
    • The analysis of designed experiments and longitudinal data by using smoothing splines
    • Verbyla, A. P., Cullis, B. R., Kenward, M. G., and Welham, S. J. (1999), "The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines" (with discussion), Applied Statistics, 48, 269-311.
    • (1999) Applied Statistics , vol.48 , pp. 269-311
    • Verbyla, A.P.1    Cullis, B.R.2    Kenward, M.G.3    Welham, S.J.4
  • 41
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel hilbert spaces, and randomized GACV
    • eds. B. Scholkopf, C. Burges, and A. Smola, Cambridge, MA: MIT Press
    • _ (1999), "Support Vector Machines, Reproducing Kernel Hilbert Spaces, and Randomized GACV," in Advances in Kernel Methods: Support Vector Learning, eds. B. Scholkopf, C. Burges, and A. Smola, Cambridge, MA: MIT Press, pp. 69-88.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 69-88
  • 43
    • 84899010839 scopus 로고    scopus 로고
    • Using the nyström method to speed up kernel machines
    • eds. T. K. Leen and T. G. Diettrich, Cambridge, MA: MIT Press
    • Williams, C.K.I, and Seeger, M. (2001), "Using the Nyström Method to Speed up Kernel Machines," in Advances in Neural Information Processing Systems (vol. 13), eds. T. K. Leen and T. G. Diettrich, Cambridge, MA: MIT Press, pp. 682-688.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 682-688
    • Williams, C.K.I.1    Seeger, M.2
  • 44
    • 33747452195 scopus 로고    scopus 로고
    • available online at cran.r-project.org
    • Wood, S. N. (2006), mgcv 1. 3., R package, available online at cran.r-project.org.
    • (2006) Mgcv 1. 3., R Package
    • Wood, S.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.