-
2
-
-
0036489053
-
Bayesian smoothing and regression splines for measurement error problems
-
Berry, S. M., Carroll, R. J., and Ruppert, D. (2002), "Bayesian Smoothing and Regression Splines for Measurement Error Problems," Journal of the American Statistical Association, 97, 160-169.
-
(2002)
Journal of the American Statistical Association
, vol.97
, pp. 160-169
-
-
Berry, S.M.1
Carroll, R.J.2
Ruppert, D.3
-
3
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
ed. D. Haussler, New York: ACM Press
-
Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992), "A Training Algorithm for Optimal Margin Classifiers," in Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, ed. D. Haussler, New York: ACM Press, pp. 144-152.
-
(1992)
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
4
-
-
84993778661
-
Comment on shively, kohn, and wood
-
Brumback, B. A., Ruppert, D., and Wand, M. P. (1999), Comment on Shively, Kohn, and Wood, Journal of the American Statistical Association, 94, 794-797.
-
(1999)
Journal of the American Statistical Association
, vol.94
, pp. 794-797
-
-
Brumback, B.A.1
Ruppert, D.2
Wand, M.P.3
-
5
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C. (1998), "A Tutorial on Support Vector Machines for Pattern Recognition," Data Mining and Knowledge Discovery, 2, 121-167.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.1
-
7
-
-
27544482613
-
Bayesian analysis for penalized spline regression using WinBUGS
-
Crainiceanu, C., Ruppert, D., and Wand, M. P. (2005), "Bayesian Analysis for Penalized Spline Regression using WinBUGS," Journal of Statistical Software, 14, 14.
-
(2005)
Journal of Statistical Software
, vol.14
, pp. 14
-
-
Crainiceanu, C.1
Ruppert, D.2
Wand, M.P.3
-
9
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit, S., Fridlyand, J., and Speed, T. P. (2002), "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, 97, 77-87.
-
(2002)
Journal of the American Statistical Association
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.P.3
-
10
-
-
25444532788
-
Flexible smoothing with b-splines and penalties
-
Eilers, P. H. C., and Marx, B. D. (1996), "Flexible Smoothing with B-splines and Penalties" (with discussion), Statistical Science, 11, 89-121.
-
(1996)
Statistical Science
, vol.11
, pp. 89-121
-
-
Eilers, P.H.C.1
Marx, B.D.2
-
11
-
-
0034419669
-
Regularization networks and support vector machines
-
Evgeniou, T., Pontil, M., and Poggio, T. (2000), "Regularization Networks and Support Vector Machines," Advances in Computational Mathematics, 13, 1-50.
-
(2000)
Advances in Computational Mathematics
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
12
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
Fine, S., and Scheinberg, K. (2001), "Efficient SVM Training Using Low-Rank Kernel Representations," Journal of Machine Learning Research, 2, 243-264.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
13
-
-
0012286432
-
Comment on Ke and Wang
-
French, J. L., Kammann, E. E., and Wand, M. R (2001), Comment on Ke and Wang, Journal of the American Statistical Association, 96, 1285-1288.
-
(2001)
Journal of the American Statistical Association
, vol.96
, pp. 1285-1288
-
-
French, J.L.1
Kammann, E.E.2
Wand, M.R.3
-
14
-
-
0001219859
-
Regularization theory and neural networks architectures
-
Girosi, R., Jones, M., and Poggio, T. (1995), "Regularization Theory and Neural Networks Architectures," Neural Computation, 7, 219-269.
-
(1995)
Neural Computation
, vol.7
, pp. 219-269
-
-
Girosi, R.1
Jones, M.2
Poggio, T.3
-
16
-
-
0011031587
-
Spline adaptation in extended linear models
-
Hansen, M. H., and Kooperberg, C. (2002), "Spline Adaptation in Extended Linear Models" (with discussion), Statistical Science, 17, 2-51.
-
(2002)
Statistical Science
, vol.17
, pp. 2-51
-
-
Hansen, M.H.1
Kooperberg, C.2
-
17
-
-
0000993124
-
Pseudosplines
-
Hastie, T. (1996), "Pseudosplines," Journal of the Royal Statistical Society, Series B, 58, 379-396.
-
(1996)
Journal of the Royal Statistical Society, Series B
, vol.58
, pp. 379-396
-
-
Hastie, T.1
-
18
-
-
33747466944
-
-
available online is cran.r-project.org
-
_ (2005), gam 0. 94, R package, available online is cran.r-project.org.
-
(2005)
Gam 0. 94, R Package
-
-
-
19
-
-
0003684449
-
-
New York: Springer-Verlag
-
Hastie, T., Tibshirani, R., and Friedman, J. (2001), The Elements of Statistical Learning, New York: Springer-Verlag.
-
(2001)
The Elements of Statistical Learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
20
-
-
0002714543
-
Making large-scale SVM learning practical
-
eds. B. Scholkopf, C. Burges, and A. Smola, Cambridge, MA: MIT Press
-
Joachims, T. (1998), "Making Large-Scale SVM Learning Practical," in Advances in Kernel Methods-Support Vector Learning, eds. B. Scholkopf, C. Burges, and A. Smola, Cambridge, MA: MIT Press.
-
(1998)
Advances in Kernel Methods-support Vector Learning
-
-
Joachims, T.1
-
21
-
-
0141575677
-
Geoadditive models
-
Kammann, E. E., and Wand, M. P. (2003), "Geoadditive Models," Applied Statistics, 52, 1-18.
-
(2003)
Applied Statistics
, vol.52
, pp. 1-18
-
-
Kammann, E.E.1
Wand, M.P.2
-
22
-
-
33747496466
-
Structured multicategory support vector machines with ANOVA decomposition
-
to appear
-
Lee, Y., Kim, Y., Lee, S., and Koo, J.-Y. (2006), "Structured Multicategory Support Vector Machines with ANOVA Decomposition," Biometrika, to appear.
-
(2006)
Biometrika
-
-
Lee, Y.1
Kim, Y.2
Lee, S.3
Koo, J.-Y.4
-
23
-
-
0036161029
-
Support vector machines for classification in nonstandard situations
-
Lin, Y., Lee, Y., and Wahba, G. (2002), "Support Vector Machines for Classification in Nonstandard Situations," Machine Learning, 46, 191-202.
-
(2002)
Machine Learning
, vol.46
, pp. 191-202
-
-
Lin, Y.1
Lee, Y.2
Wahba, G.3
-
24
-
-
0036643043
-
Statistical properties and adaptive tuning of support vector machines
-
Lin, Y., Wahba, G., Zhang, H., and Lee, Y. (2002), "Statistical Properties and Adaptive Tuning of Support Vector Machines," Machine Learning, 48, 115-136.
-
(2002)
Machine Learning
, vol.48
, pp. 115-136
-
-
Lin, Y.1
Wahba, G.2
Zhang, H.3
Lee, Y.4
-
25
-
-
33747509810
-
Component selection and smoothing in smoothing spline analysis of variance models
-
Lin, Y., and Zhang, H. H. (2006), "Component Selection and Smoothing in Smoothing Spline Analysis of Variance Models," The Annals of Statistics, 34, 5.
-
(2006)
The Annals of Statistics
, vol.34
, pp. 5
-
-
Lin, Y.1
Zhang, H.H.2
-
26
-
-
0032493547
-
Direct generalized additive modeling with penalized likelihood
-
Marx, B. D., and Eilers, P. H. C. (1998), "Direct Generalized Additive Modeling With Penalized Likelihood," Computational Statistics and Data Analysis, 28, 193-209.
-
(1998)
Computational Statistics and Data Analysis
, vol.28
, pp. 193-209
-
-
Marx, B.D.1
Eilers, P.H.C.2
-
27
-
-
4544224992
-
Smoothing with mixed model software
-
Ngo, L., and Wand, M. P. (2004), "Smoothing With Mixed Model Software," Journal of Statistical Software, 9, 1.
-
(2004)
Journal of Statistical Software
, vol.9
, pp. 1
-
-
Ngo, L.1
Wand, M.P.2
-
29
-
-
0038182862
-
Discussion of "some aspects of the spline smoothing approach to nonparametric regression curve fitting" by B. W. Silverman
-
Parker, R. L., and Rice, J. A. (1985), Discussion of "Some Aspects of the Spline Smoothing Approach to Nonparametric Regression Curve Fitting" by B. W. Silverman, Journal of the Royal Statistical Society, Series B, 47, 40-42.
-
(1985)
Journal of the Royal Statistical Society, Series B
, vol.47
, pp. 40-42
-
-
Parker, R.L.1
Rice, J.A.2
-
30
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
eds. B. Scholkopf, C. Burges, and A. Smola, Cambridge, MA: MIT Press
-
Platt, J. (1998), "Fast Training of Support Vector Machines Using Sequential Minimal Optimization," in Advances in Kernel Methods-Support Vector Learning, eds. B. Scholkopf, C. Burges, and A. Smola, Cambridge, MA: MIT Press.
-
(1998)
Advances in Kernel Methods-support Vector Learning
-
-
Platt, J.1
-
33
-
-
0012891890
-
-
New York: Cambridge University Press
-
Ruppert, D., Wand, M. P., and Carroll, R. J. (2003), Semiparametric Regression, New York: Cambridge University Press.
-
(2003)
Semiparametric Regression
-
-
Ruppert, D.1
Wand, M.P.2
Carroll, R.J.3
-
34
-
-
0041151310
-
Monosplines and quadrature formulae
-
ed. T. Greville, Madison, WI: University of Wisconsin Press
-
Schoenberg, I. (1969), "Monosplines and Quadrature Formulae," in Theory and Application of Spline Functions, ed. T. Greville, Madison, WI: University of Wisconsin Press.
-
(1969)
Theory and Application of Spline Functions
-
-
Schoenberg, I.1
-
38
-
-
0346862811
-
The use of polynomial splines and their tensor products in multivariate function estimation
-
Stone, C. J. (1994), "The Use of Polynomial Splines and their Tensor Products in Multivariate Function Estimation" (with discussion), The Annals of Statistics, 22, 118-184.
-
(1994)
The Annals of Statistics
, vol.22
, pp. 118-184
-
-
Stone, C.J.1
-
39
-
-
0033440749
-
The analysis of designed experiments and longitudinal data by using smoothing splines
-
Verbyla, A. P., Cullis, B. R., Kenward, M. G., and Welham, S. J. (1999), "The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines" (with discussion), Applied Statistics, 48, 269-311.
-
(1999)
Applied Statistics
, vol.48
, pp. 269-311
-
-
Verbyla, A.P.1
Cullis, B.R.2
Kenward, M.G.3
Welham, S.J.4
-
41
-
-
0001873883
-
Support vector machines, reproducing kernel hilbert spaces, and randomized GACV
-
eds. B. Scholkopf, C. Burges, and A. Smola, Cambridge, MA: MIT Press
-
_ (1999), "Support Vector Machines, Reproducing Kernel Hilbert Spaces, and Randomized GACV," in Advances in Kernel Methods: Support Vector Learning, eds. B. Scholkopf, C. Burges, and A. Smola, Cambridge, MA: MIT Press, pp. 69-88.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 69-88
-
-
-
43
-
-
84899010839
-
Using the nyström method to speed up kernel machines
-
eds. T. K. Leen and T. G. Diettrich, Cambridge, MA: MIT Press
-
Williams, C.K.I, and Seeger, M. (2001), "Using the Nyström Method to Speed up Kernel Machines," in Advances in Neural Information Processing Systems (vol. 13), eds. T. K. Leen and T. G. Diettrich, Cambridge, MA: MIT Press, pp. 682-688.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 682-688
-
-
Williams, C.K.I.1
Seeger, M.2
-
44
-
-
33747452195
-
-
available online at cran.r-project.org
-
Wood, S. N. (2006), mgcv 1. 3., R package, available online at cran.r-project.org.
-
(2006)
Mgcv 1. 3., R Package
-
-
Wood, S.N.1
|