-
1
-
-
10944260050
-
Asymptotic properties of estimators for the volume fractions of jointly stationary random sets
-
S. Böhm, L. Heinrich, V. Schmidt, Asymptotic properties of estimators for the volume fractions of jointly stationary random sets, Statist. Neerlandica 58 (2004) 388-406.
-
(2004)
Statist. Neerlandica
, vol.58
, pp. 388-406
-
-
Böhm, S.1
Heinrich, L.2
Schmidt, V.3
-
2
-
-
1242337783
-
Kernel estimation of the spectral density of stationary random closed sets
-
S. Böhm, L. Heinrich, V. Schmidt, Kernel estimation of the spectral density of stationary random closed sets, Austral. New Zealand J. Statist. 46 (2004) 37-47.
-
(2004)
Austral. New Zealand J. Statist.
, vol.46
, pp. 37-47
-
-
Böhm, S.1
Heinrich, L.2
Schmidt, V.3
-
4
-
-
0002359086
-
On existence and mixing properties of germ-grain models
-
L. Heinrich, On existence and mixing properties of germ-grain models, Statistics 23 (1992) 271-286.
-
(1992)
Statistics
, vol.23
, pp. 271-286
-
-
Heinrich, L.1
-
6
-
-
14544298828
-
Large deviations of the empirical volume fraction for stationary Poisson grain models
-
L. Heinrich, Large deviations of the empirical volume fraction for stationary Poisson grain models, Ann. Appl. Probab. 15 (1) (2005).
-
(2005)
Ann. Appl. Probab.
, vol.15
, Issue.1
-
-
Heinrich, L.1
-
7
-
-
0033141155
-
Central limit theorem for a class of random measures associated with germ-grain models
-
L. Heinrich, I.S. Molchanov, Central limit theorem for a class of random measures associated with germ-grain models, Adv. Appl. Probab. 31 (1999) 283-314.
-
(1999)
Adv. Appl. Probab.
, vol.31
, pp. 283-314
-
-
Heinrich, L.1
Molchanov, I.S.2
-
8
-
-
0034164974
-
On support measures in Minkowski spaces and contact distributions in stochastic geometry
-
D. Hug, G. Last, On support measures in Minkowski spaces and contact distributions in stochastic geometry, Ann. Probab. 28 (2000) 796-850.
-
(2000)
Ann. Probab.
, vol.28
, pp. 796-850
-
-
Hug, D.1
Last, G.2
-
10
-
-
17844378295
-
Algorithms for the computation of Minkowski functionals of deterministic and random polyconvex sets
-
Preprint
-
S. Klenk, J. Mayer, V. Schmidt, E. Spodarev, Algorithms for the computation of Minkowski functionals of deterministic and random polyconvex sets, Preprint, 2005.
-
(2005)
-
-
Klenk, S.1
Mayer, J.2
Schmidt, V.3
Spodarev, E.4
-
11
-
-
0037708521
-
Asymptotic properties of stereological estimators of the volume fraction for stationary random sets
-
S. Mase, Asymptotic properties of stereological estimators of the volume fraction for stationary random sets, J. Appl. Probab. 19 (1982) 111-126.
-
(1982)
J. Appl. Probab.
, vol.19
, pp. 111-126
-
-
Mase, S.1
-
14
-
-
0034002522
-
An integral-geometric approach for the Euler-Poincaré characteristic of spatial images
-
W. Nagel, J. Ohser, K. Pischang, An integral-geometric approach for the Euler-Poincaré characteristic of spatial images, J. Microscopy 189 (2000) 54-62.
-
(2000)
J. Microscopy
, vol.189
, pp. 54-62
-
-
Nagel, W.1
Ohser, J.2
Pischang, K.3
-
16
-
-
0029855962
-
The estimation of the Euler-Poincaré characteristic from observations on parallel sections
-
J. Ohser, W. Nagel, The estimation of the Euler-Poincaré characteristic from observations on parallel sections, J. Microscopy 184 (1996) 117-126.
-
(1996)
J. Microscopy
, vol.184
, pp. 117-126
-
-
Ohser, J.1
Nagel, W.2
-
17
-
-
33845224832
-
The Euler number of discretized sets-an appropriate choice of adjacency in homogeneous lattices
-
J. Ohser, W. Nagel, K. Schladitz, The Euler number of discretized sets-an appropriate choice of adjacency in homogeneous lattices, Lecture Notes Phys. 600 (2002) 287-312.
-
(2002)
Lecture Notes Phys.
, vol.600
, pp. 287-312
-
-
Ohser, J.1
Nagel, W.2
Schladitz, K.3
-
18
-
-
17844386154
-
The Euler number of discretised sets-surprising results in three dimensions
-
J. Ohser, W. Nagel, K. Schladitz, The Euler number of discretised sets-surprising results in three dimensions, Image Anal. Stereol. 22 (2003) 11-19.
-
(2003)
Image Anal. Stereol.
, vol.22
, pp. 11-19
-
-
Ohser, J.1
Nagel, W.2
Schladitz, K.3
-
19
-
-
0036065017
-
Determination of spherical area measures by means of dilation volumes
-
J. Rataj, Determination of spherical area measures by means of dilation volumes, Math. Nachr. 235 (2002) 143-162.
-
(2002)
Math. Nachr.
, vol.235
, pp. 143-162
-
-
Rataj, J.1
-
20
-
-
17844407502
-
Computational topology for point data: Betti numbers of α-shapes
-
V. Robins, Computational topology for point data: Betti numbers of α-shapes, Lecture Notes Phys. 600 (2002) 261-274.
-
(2002)
Lecture Notes Phys.
, vol.600
, pp. 261-274
-
-
Robins, V.1
-
21
-
-
0003333144
-
Convex bodies. The Brunn-Minkowski theory
-
Cambridge University Press, Cambridge
-
R. Schneider, Convex bodies. The Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993.
-
(1993)
Encyclopedia of Mathematics and Its Applications
, vol.44
-
-
Schneider, R.1
-
24
-
-
0003444918
-
-
2nd ed. Wiley, Chichester
-
D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and its Applications, 2nd ed., Wiley, Chichester, 1995.
-
(1995)
Stochastic Geometry and Its Applications
-
-
Stoyan, D.1
Kendall, W.S.2
Mecke, J.3
-
25
-
-
0042229088
-
On the estimation variance of the specific Euler-Poincaré characteristic of random networks
-
A. Tscheschel, D. Stoyan, On the estimation variance of the specific Euler-Poincaré characteristic of random networks, J. Microscopy 211 (2003) 80-88.
-
(2003)
J. Microscopy
, vol.211
, pp. 80-88
-
-
Tscheschel, A.1
Stoyan, D.2
-
26
-
-
0002890462
-
Digital unbiased estimation of the Euler-Poincaré characteristic in different dimensions
-
H.J. Vogel, Digital unbiased estimation of the Euler-Poincaré characteristic in different dimensions, Acta Stereologica 16 (1997) 97-104.
-
(1997)
Acta Stereologica
, vol.16
, pp. 97-104
-
-
Vogel, H.J.1
-
27
-
-
0000220346
-
Densities for stationary random sets and point processes
-
W. Weil, J.A. Wieacker, Densities for stationary random sets and point processes, Adv. Appl. Probab. 16 (1984) 324-346.
-
(1984)
Adv. Appl. Probab.
, vol.16
, pp. 324-346
-
-
Weil, W.1
Wieacker, J.A.2
|