메뉴 건너뛰기




Volumn 25, Issue 1, 2004, Pages 63-71

A comparative analysis of structural risk minimization by support vector machines and nearest neighbor rule

Author keywords

Kernel operator; Nearest neighbor; Prototype selection; Structural risk minimization; Support vector machines

Indexed keywords

COMPUTATIONAL COMPLEXITY; COSTS; MACHINERY; RISKS;

EID: 0345376662     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2003.09.002     Document Type: Article
Times cited : (31)

References (23)
  • 3
    • 0035359888 scopus 로고    scopus 로고
    • Another move towards the minimum consistent subset: A tabu search approach to the condensed nearest neighbor rule
    • Cerveron V. Ferri F. Another move towards the minimum consistent subset: A tabu search approach to the condensed nearest neighbor rule IEEE Trans. Systems, Man Cybernet. B 31 3 2001 408-413
    • (2001) IEEE Trans. Systems, Man Cybernet. B , vol.31 , Issue.3 , pp. 408-413
    • Cerveron, V.1    Ferri, F.2
  • 4
    • 0018492515 scopus 로고
    • The condensed nearest neighbor rule using the concept of mutual nearest neighbourhood
    • Chidananda-Gowda K. Krishna G. The condensed nearest neighbor rule using the concept of mutual nearest neighbourhood IEEE Trans. Inform. Theory 25 4 1979 488-490
    • (1979) IEEE Trans. Inform. Theory , vol.25 , Issue.4 , pp. 488-490
    • Chidananda-Gowda, K.1    Krishna, G.2
  • 5
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C. Vapnik V. Support-vector networks Machine Learn. 20 1995 273-297
    • (1995) Machine Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T.M. Hart P.E. Nearest neighbor pattern classification IEEE Trans. Inform. Theory 13 1 1967 21-27
    • (1967) IEEE Trans. Inform. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 7
    • 0028385080 scopus 로고
    • Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems design
    • Dasarathy B. Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems design IEEE Trans. Systems Man Cybernet. 24 3 1994 511-517
    • (1994) IEEE Trans. Systems Man Cybernet. , vol.24 , Issue.3 , pp. 511-517
    • Dasarathy, B.1
  • 10
    • 0015346497 scopus 로고
    • The reduced nearest neighbor rule
    • Gates G.W. The reduced nearest neighbor rule IEEE Trans. Inform. Theory 18 3 1972 431-433
    • (1972) IEEE Trans. Inform. Theory , vol.18 , Issue.3 , pp. 431-433
    • Gates, G.W.1
  • 11
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • Hart P.E. The condensed nearest neighbor rule IEEE Trans. Inform. Theory 14 3 1968 515-516
    • (1968) IEEE Trans. Inform. Theory , vol.14 , Issue.3 , pp. 515-516
    • Hart, P.E.1
  • 12
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale svm learning practical
    • B. Schölkopf, C. Burges, A. Smola (Eds.), MIT Press
    • Joachims T. Making large-scale svm learning practical Schölkopf B. Burges C. Smola A. Advances in Kernel Methods--Support Vector Learning 1999 MIT Press
    • (1999) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1
  • 13
    • 0037277806 scopus 로고    scopus 로고
    • Fast minimization of the structural risk by nearest neighbor rule
    • Karaçal B. Krim A. Fast minimization of the structural risk by nearest neighbor rule IEEE Trans. Neural Networks 14 1 2003 127-137
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.1 , pp. 127-137
    • Karaçal, B.1    Krim, A.2
  • 14
    • 0031999908 scopus 로고    scopus 로고
    • Nearest prototype classification: Clustering, genetic algorithms, or random search?
    • Kuncheva L. Bezdek J. Nearest prototype classification: Clustering, genetic algorithms, or random search? IEEE Trans. Systems Man Cybernet. 28 1 1998 160-164
    • (1998) IEEE Trans. Systems Man Cybernet. , vol.28 , Issue.1 , pp. 160-164
    • Kuncheva, L.1    Bezdek, J.2
  • 19
    • 0016969272 scopus 로고
    • An experiment with the edited nearest neighbor rule
    • Tomek I. An experiment with the edited nearest neighbor rule IEEE Trans. Systems Man Cybernet. 6 6 1976 448-452
    • (1976) IEEE Trans. Systems Man Cybernet. , vol.6 , Issue.6 , pp. 448-452
    • Tomek, I.1
  • 21
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Cambridge: MIT Press
    • Vapnik V. Golowich S. Smola A. Support vector method for function approximation, regression estimation, and signal processing Advances in Neural Information Systems vol. 9 1997 MIT Press Cambridge
    • (1997) Advances in Neural Information Systems , vol.9
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 22
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson D.R. Martinez T.R. Reduction techniques for instance-based learning algorithms Machine Learn. 38 3 2000 257-286
    • (2000) Machine Learn. , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 23
    • 0036529857 scopus 로고    scopus 로고
    • Kernel nearest-neighbor algorithm
    • Yu K. Ji L. Zhang X. Kernel nearest-neighbor algorithm Neural Process. Lett. 15 2 2002 147-156
    • (2002) Neural Process. Lett. , vol.15 , Issue.2 , pp. 147-156
    • Yu, K.1    Ji, L.2    Zhang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.