메뉴 건너뛰기




Volumn 102, Issue 1, 2006, Pages 46-52

Classification of intramural metastases and lymph node metastases of esophageal cancer from gene expression based on boosting and projective adaptive resonance theory

Author keywords

boosting; cancer classification; esophageal cancer; intramural metastases; projective adaptive resonance theory

Indexed keywords

BIOMARKERS; DIAGNOSIS; DNA; FUZZY SETS; GENES; PATIENT MONITORING;

EID: 33746357162     PISSN: 13891723     EISSN: None     Source Type: Journal    
DOI: 10.1263/jbb.102.46     Document Type: Article
Times cited : (14)

References (17)
  • 1
    • 0035888074 scopus 로고    scopus 로고
    • Estimating the world cancer burden: Globocan 2000
    • Parkin D.M., Bray F., Ferlay J., and Pisani P. Estimating the world cancer burden: Globocan 2000. Int. J. Cancer 94 (2001) 153-156
    • (2001) Int. J. Cancer , vol.94 , pp. 153-156
    • Parkin, D.M.1    Bray, F.2    Ferlay, J.3    Pisani, P.4
  • 2
    • 0034986239 scopus 로고    scopus 로고
    • Prognostic evaluation for squamous cell carcinomas of the lower thoracic esophagus treated with three-field lymph node dissection
    • Igaki H., Kato H., Tachimori Y., Sato H., Daiko H., and Nakanishi Y. Prognostic evaluation for squamous cell carcinomas of the lower thoracic esophagus treated with three-field lymph node dissection. Eur. J. Cardiothorac. Surg. 19 (2001) 887-893
    • (2001) Eur. J. Cardiothorac. Surg. , vol.19 , pp. 887-893
    • Igaki, H.1    Kato, H.2    Tachimori, Y.3    Sato, H.4    Daiko, H.5    Nakanishi, Y.6
  • 3
    • 0036868316 scopus 로고    scopus 로고
    • Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large B-cell lymphoma
    • Ando T., Suguro M., Hanai T., Kobayashi T., Honda H., and Seto M. Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large B-cell lymphoma. Jpn. J. Cancer Res. 93 (2002) 1207-1212
    • (2002) Jpn. J. Cancer Res. , vol.93 , pp. 1207-1212
    • Ando, T.1    Suguro, M.2    Hanai, T.3    Kobayashi, T.4    Honda, H.5    Seto, M.6
  • 4
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., and Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46 (2002) 389-422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 5
    • 27544438113 scopus 로고    scopus 로고
    • A new reliable cancer diagnosis method using boosted fuzzy classifier with a SWEEP operator method
    • Takahashi H., and Honda H. A new reliable cancer diagnosis method using boosted fuzzy classifier with a SWEEP operator method. J. Chem. Eng. Jpn. 38 (2005) 763-773
    • (2005) J. Chem. Eng. Jpn. , vol.38 , pp. 763-773
    • Takahashi, H.1    Honda, H.2
  • 6
    • 33745674976 scopus 로고    scopus 로고
    • Prediction of peptide binding to major histocompatibility complex class II molecules through use of boosted fuzzy classifier with SWEEP operator method
    • Takahashi H., and Honda H. Prediction of peptide binding to major histocompatibility complex class II molecules through use of boosted fuzzy classifier with SWEEP operator method. J. Biosci. Bioeng. 101 (2006) 137-141
    • (2006) J. Biosci. Bioeng. , vol.101 , pp. 137-141
    • Takahashi, H.1    Honda, H.2
  • 8
    • 13444293397 scopus 로고    scopus 로고
    • Construction of robust prognostic predictors by using projective adaptive resonance theory as a gene filtering method
    • Takahashi H., Kobayashi T., and Honda H. Construction of robust prognostic predictors by using projective adaptive resonance theory as a gene filtering method. Bioinformatics 21 (2005) 179-186
    • (2005) Bioinformatics , vol.21 , pp. 179-186
    • Takahashi, H.1    Kobayashi, T.2    Honda, H.3
  • 9
    • 0034776133 scopus 로고    scopus 로고
    • Fuzzy neural network-based prediction of the motif for MHC class II binding peptides
    • Noguchi H., Hanai T., Honda H., Harrison L.C., and Kobayashi T. Fuzzy neural network-based prediction of the motif for MHC class II binding peptides. J. Biosci. Bioeng. 92 (2001) 227-231
    • (2001) J. Biosci. Bioeng. , vol.92 , pp. 227-231
    • Noguchi, H.1    Hanai, T.2    Honda, H.3    Harrison, L.C.4    Kobayashi, T.5
  • 10
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Mach. Learn. 5 (1990) 197-227
    • (1990) Mach. Learn. , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Freund Y., and Schapire R.E. A decision-theoretic generalization of online learning and an application to boosting. J. Comput. Syst. Sci. 55 (1997) 119-139
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 12
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: a statistical view of boosting. Ann. Stat. 28 (2000) 337-407
    • (2000) Ann. Stat. , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 13
    • 0035371148 scopus 로고    scopus 로고
    • An adaptive version of the boost by majority algorithm
    • Freund Y. An adaptive version of the boost by majority algorithm. Mach. Learn. 43 (2000) 293-318
    • (2000) Mach. Learn. , vol.43 , pp. 293-318
    • Freund, Y.1
  • 14
    • 0026923902 scopus 로고
    • On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm
    • Horikawa S., Furuhashi T., and Uchikawa Y. On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. IEEE Trans. Neural Netw. 3 (1992) 801-806
    • (1992) IEEE Trans. Neural Netw. , vol.3 , pp. 801-806
    • Horikawa, S.1    Furuhashi, T.2    Uchikawa, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.