메뉴 건너뛰기




Volumn 15, Issue 3, 2006, Pages 353-370

Learning gene network using time-delayed Bayesian network

Author keywords

Bayesian networks; Causal relationship; Gene network; Learning by modification; Mutual information; Time delayed bayesian network

Indexed keywords


EID: 33746225580     PISSN: 02182130     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218213006002710     Document Type: Article
Times cited : (4)

References (24)
  • 1
    • 0032668662 scopus 로고    scopus 로고
    • Identifying gene regulatory networks from exprimental data
    • T. Chen, V. Filkov, and S.S. Skiena. Identifying Gene Regulatory Networks from Exprimental Data. In RECOMB, pages 94-103, 1999.
    • (1999) RECOMB , pp. 94-103
    • Chen, T.1    Filkov, V.2    Skiena, S.S.3
  • 2
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
    • S. Imoto, T. Goto, and S. Miyano. Estimation of Genetic Networks and Functional Structures Between Genes by Using Bayesian Networks and Nonparametric Regression. In PSB, volume 7, pages 175-186, 2002.
    • (2002) PSB , vol.7 , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 3
    • 0033691754 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • N. Friedman, M. Linial, I. Nachman, and D. Peer. Using Bayesian Networks to Analyze Expression Data. In RECOMB, pages 127-135, 2000.
    • (2000) RECOMB , pp. 127-135
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Peer, D.4
  • 4
    • 0035228396 scopus 로고    scopus 로고
    • A comparison of genetic network models
    • L. F. A. Wessels, E. P. V. Someren, and M. J. T. Reinders. A Comparison of Genetic Network Models. In PSB, volume 6, pages 508-519, 2001.
    • (2001) PSB , vol.6 , pp. 508-519
    • Wessels, L.F.A.1    Someren, E.P.V.2    Reinders, M.J.T.3
  • 5
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic getworks from a small number of gene expression patterns under the Boolean network model
    • T. Akutsu, S. Miyano, and S. Kuhara. Identification of Genetic Getworks from a Small Number of Gene Expression Patterns Under the Boolean Network Model. In PSB, pages 17-28, 1999.
    • (1999) PSB , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 6
    • 84960432692 scopus 로고    scopus 로고
    • Combining microarrays and biological knowledge for estimating gene networks via Bayesian network
    • S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano. Combining Microarrays and Biological Knowledge for Estimating Gene Networks via Bayesian Network. In CSB, 2003.
    • (2003) CSB
    • Imoto, S.1    Higuchi, T.2    Goto, T.3    Tashiro, K.4    Kuhara, S.5    Miyano, S.6
  • 7
    • 0034564415 scopus 로고    scopus 로고
    • Linear modeling of genetic networks from experimental data
    • E. P. V. Someren, L. F. A. Wessels, and M. J. T. Reinders. Linear Modeling of Genetic Networks from Experimental Data. In ISMB, pages 355-366, 2000.
    • (2000) ISMB , pp. 355-366
    • Someren, E.P.V.1    Wessels, L.F.A.2    Reinders, M.J.T.3
  • 10
    • 0037716538 scopus 로고    scopus 로고
    • Inhibition of lipopolysaccharide-inducible nitric oxide synthase TNF-α and COX-2 expression by sauchinone effects on I-κ.bα phosphorylation, C/EBP and AP-1 activation
    • A. K. Lee, S. H. Sung, Y. C. Kim, and S. G. Kim. Inhibition of Lipopolysaccharide-Inducible Nitric Oxide Synthase TNF-α and COX-2 Expression by Sauchinone Effects on I-κ.Bα Phosphorylation, C/EBP and AP-1 Activation. British Journal of Pharmacology, 139:11-20, 2003.
    • (2003) British Journal of Pharmacology , vol.139 , pp. 11-20
    • Lee, A.K.1    Sung, S.H.2    Kim, Y.C.3    Kim, S.G.4
  • 11
    • 0032611513 scopus 로고    scopus 로고
    • Modeling gene expression with differential equations
    • T. Chen, H. L. He, and G. M. Church. Modeling Gene Expression with Differential Equations. In PSB, volume 4, pages 29-40, 1999.
    • (1999) PSB , vol.4 , pp. 29-40
    • Chen, T.1    He, H.L.2    Church, G.M.3
  • 12
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces Cerevisiae by microarray hybridization
    • P. T. Spellman, G. Sherlock, and B. Futcher. Comprehensive Identification of Cell Cycle-Regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization. Molecular Biology of the Cell, 9:3273-3297, 1998.
    • (1998) Molecular Biology of the Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Futcher, B.3
  • 13
    • 0036900861 scopus 로고    scopus 로고
    • Transcriptional regulatory networks and yeast cell cycle
    • B. Futcher. Transcriptional Regulatory Networks and Yeast Cell Cycle. Current Opinion in Cell Biology, 14:676-683, 2002.
    • (2002) Current Opinion in Cell Biology , vol.14 , pp. 676-683
    • Futcher, B.1
  • 14
    • 0002207004 scopus 로고    scopus 로고
    • Discovering the hidden structure of complex dynamic systems
    • X. Boyen, N. Friedman, and D. Koller. Discovering the Hidden Structure of Complex Dynamic Systems. In UAI, 1999.
    • (1999) UAI
    • Boyen, X.1    Friedman, N.2    Koller, D.3
  • 15
    • 58149365221 scopus 로고
    • Time series prediction using belief network models
    • P. Dagum and A. Galper. Time Series Prediction Using Belief Network Models. Int. J. Hum.-Comput. Stud., 42(6):617-632, 1995.
    • (1995) Int. J. Hum.-comput. Stud. , vol.42 , Issue.6 , pp. 617-632
    • Dagum, P.1    Galper, A.2
  • 16
    • 0035340322 scopus 로고    scopus 로고
    • Evolutionary learning of dynamic probabilistic models with large time lags
    • A. Tucker, X. Liu, and A. Ogden-Swift. Evolutionary Learning of Dynamic Probabilistic Models With Large Time Lags. Int. J. Intell. Syst, 16(5):621-645, 2001.
    • (2001) Int. J. Intell. Syst , vol.16 , Issue.5 , pp. 621-645
    • Tucker, A.1    Liu, X.2    Ogden-Swift, A.3
  • 17
    • 14344263350 scopus 로고    scopus 로고
    • Learning Bayesian network structure from massive datasets: The "sparse candidate" Algorithm
    • N. Friedman, I. Nachman, and K. Peer. Learning Bayesian Network Structure from Massive Datasets: the "Sparse Candidate" Algorithm. In UAI, pages 206-215, 1999.
    • (1999) UAI , pp. 206-215
    • Friedman, N.1    Nachman, I.2    Peer, K.3
  • 18
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits. A Bayesian Method for The Induction of Probabilistic Networks from Data. Machine Learning, 9:309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 19
    • 0000854197 scopus 로고    scopus 로고
    • Learning the structure of dynamic probabilistic networks
    • N. Friedman, K. Murphy, and S. Russell. Learning the Structure of Dynamic Probabilistic Networks. In UAI, pages 139-147, 1998.
    • (1998) UAI , pp. 139-147
    • Friedman, N.1    Murphy, K.2    Russell, S.3
  • 20
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E. coli from time series expression profiles
    • I. M. Ong, J. D. Glasner, and D. Page. Modelling Regulatory Pathways in E. coli from time Series Expression Profiles. Bioinfonnatics, 18:241-248, 2002.
    • (2002) Bioinfonnatics , vol.18 , pp. 241-248
    • Ong, I.M.1    Glasner, J.D.2    Page, D.3
  • 21
    • 0031616241 scopus 로고    scopus 로고
    • REVEAL,a general reverse engineering algorithm for inference of genetic network architectures
    • S. Liang, S. Fuhrman, and R. Somogyi. REVEAL,a General Reverse Engineering Algorithm for Inference of Genetic Network Architectures. In PSB, volume 3, pages 18-29, 1998.
    • (1998) PSB , vol.3 , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 22
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data, by using support vector mchines
    • M. P. Brown, W. N. Grundy, and D. Lin. Knowledge-Based Analysis of Microarray Gene Expression Data, by Using Support Vector Mchines. Proc. Nati. Acad. Scie. USA, 97(1):262-267, 2000.
    • (2000) Proc. Nati. Acad. Scie. USA , vol.97 , Issue.1 , pp. 262-267
    • Brown, M.P.1    Grundy, W.N.2    Lin, D.3
  • 23
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • N. Friedman. Inferring Cellular Networks Using Probabilistic Graphical Models. Science, 33:799-805, 2004.
    • (2004) Science , vol.33 , pp. 799-805
    • Friedman, N.1
  • 24
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mRNA expression levels during CNS development and injury
    • P. D. Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Linear Modeling of mRNA Expression Levels During CNS Development and Injury. In PSB, pages 41-52, 1999.
    • (1999) PSB , pp. 41-52
    • Haeseleer, P.D.1    Wen, X.2    Fuhrman, S.3    Somogyi, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.