-
2
-
-
0033569406
-
Molecular classification of cancer. Class discovery and class prediction by gene expression monitoring
-
Golub T.R., et al., Molecular classification of cancer. Class discovery and class prediction by gene expression monitoring. Science, 286, 531-537, 1999.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
-
3
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
Khan J., et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7, 673-679, 2001.
-
(2001)
Nature Medicine
, vol.7
, pp. 673-679
-
-
Khan, J.1
-
4
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I., Weston J., Barnhill S., and Vapnik V., Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning, 46 (1-3): 389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
6
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey T., Cristianini N. et al, Support vector machine classification and validation of cancer tissue samples using microarray expression data, Bioinformatics, 16:906-914, 2002.
-
(2002)
Bioinformatics
, vol.16
, pp. 906-914
-
-
Furey, T.1
Cristianini, N.2
-
7
-
-
0036851381
-
Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles
-
Valentini G., Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles, Artificial Intelligence in Medicine, 2002.
-
(2002)
Artificial Intelligence in Medicine
-
-
Valentini, G.1
-
8
-
-
0032183995
-
The minimum description length principle in coding and modelling
-
Barron A., Rissanen J., Yu B., The minimum description length principle in coding and modelling, IEEE Transactions on Information Theory, 44: 2743-2760, 1998.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, pp. 2743-2760
-
-
Barron, A.1
Rissanen, J.2
Yu, B.3
-
9
-
-
84941149588
-
-
St Jude Children's Research Hospital. http://www.stjuderesearch.org/data/ ALL1/.
-
-
-
-
10
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum A., Langley P., Selection of relevant features and examples in machine learning, Artificial Intelligence, 97:245-271, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 245-271
-
-
Blum, A.1
Langley, P.2
-
11
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., John G., Wrappers for feature subset selection. Artificial Intelligence, 97:273-324, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
12
-
-
85077432727
-
On biases in estimatine multi-valued attributes
-
Kononenko I., On biases in estimatine multi-valued attributes, IJCAI95, 1034-1040, 1995.
-
(1995)
IJCAI95
, pp. 1034-1040
-
-
Kononenko, I.1
-
14
-
-
0031276011
-
Bayesian network classifiers
-
Friedman N., Geiger D., Goldszmidt M., Bayesian Network Classifiers, Machine Learning, 29:131-161, 1997.
-
(1997)
Machine Learning
, vol.29
, pp. 131-161
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
15
-
-
21244461917
-
Learning the structure of augmented Bayesian classifiers
-
Keogh E., Pazzani M.J., Learning the structure of augmented Bayesian classifiers, International Journal on Artificial Intelligence Tools, Vol. 11, No. 4, 587-601, 2002.
-
(2002)
International Journal on Artificial Intelligence Tools
, vol.11
, Issue.4
, pp. 587-601
-
-
Keogh, E.1
Pazzani, M.J.2
-
16
-
-
0042614837
-
Comparing bayesian network classifiers
-
Morgan Kaufmann Publishers, Inc., San Francisco
-
Cheng G., Greiner R., Comparing Bayesian Network Classifiers, Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers, Inc., San Francisco, 1999.
-
(1999)
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
-
-
Cheng, G.1
Greiner, R.2
-
17
-
-
0003991806
-
-
Wiley-Interscience, New York, NY, USA
-
Vapnik V., Statistical Learning Theory, Wiley-Interscience, New York, NY, USA, 1998.
-
(1998)
Statistical Learning Theory
-
-
Vapnik, V.1
-
18
-
-
19044399684
-
Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
-
Yeoh E.J. et al., Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling, Cancer Cell, 1:133-143, 2002.
-
(2002)
Cancer Cell
, vol.1
, pp. 133-143
-
-
Yeoh, E.J.1
-
20
-
-
0038021028
-
A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
-
Liu H., Li J., Wong L., A Comparative Study on Feature Selection and Classification Methods Using Gene Expression Profiles and Proteomic Patterns, Genome informatics 13:51-60, 2002.
-
(2002)
Genome Informatics
, vol.13
, pp. 51-60
-
-
Liu, H.1
Li, J.2
Wong, L.3
-
21
-
-
84941153830
-
-
http://www.oracle.com
-
-
-
|