-
2
-
-
0001371923
-
Fast discovery of association rules
-
AAAI/MITPress
-
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A Verkamo. Fast discovery of association rules. Advances in Knowledge Discovery and Data Mining, 307-328, AAAI/MITPress, 1996.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 307-328
-
-
Agrawal, R.1
Mannila, H.2
Srikant, R.3
Toivonen, H.4
Verkamo, A.5
-
8
-
-
0037774099
-
On bipartite and multipartite clique problems
-
M. Dawande, P. Keskinocak, J. Swaminathan, and S. Tayur. On bipartite and multipartite clique problems. J. Algorithms 41(2): 388-403, 2001.
-
(2001)
J. Algorithms
, vol.41
, Issue.2
, pp. 388-403
-
-
Dawande, M.1
Keskinocak, P.2
Swaminathan, J.3
Tayur, S.4
-
11
-
-
0038391443
-
Bagging to improve the accuracy of a clustering procedure
-
S.Dudoit and J. Fridlyand. Bagging to improve the accuracy of a clustering procedure. Bioinformatics, 19(9): 1090-1099, 2003.
-
(2003)
Bioinformatics
, vol.19
, Issue.9
, pp. 1090-1099
-
-
Dudoit, S.1
Fridlyand, J.2
-
13
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. Proceedings of ACM SIGMOD'00, 1-12, 2000.
-
(2000)
Proceedings of ACM SIGMOD'00
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
17
-
-
2442611856
-
Stability-based validation of clustering solution
-
T. Lange, V. Roth, M. Braun, and J. Buhmann. Stability-Based Validation of Clustering Solution. Neural Computation, 16(6): 1299-1323, 2004.
-
(2004)
Neural Computation
, vol.16
, Issue.6
, pp. 1299-1323
-
-
Lange, T.1
Roth, V.2
Braun, M.3
Buhmann, J.4
-
18
-
-
33746082673
-
Mining approximate frequent itemsets from noisy data
-
J. Liu, S. Paulsen, W. Wang, A. B. Nobel, and J. Prins. Mining Approximate Frequent Itemsets from Noisy Data. Proceedings of ICDM'05, 721-724, 2005.
-
(2005)
Proceedings of ICDM'05
, pp. 721-724
-
-
Liu, J.1
Paulsen, S.2
Wang, W.3
Nobel, A.B.4
Prins, J.5
-
19
-
-
33745443433
-
Mining approximate frequent itemsets in the presence of noise: Algorithm and analysis
-
To appear
-
J. Liu, S. Paulsen, X. Sun, W. Wang, A.B. Nobel, and J. Prins. Mining approximate frequent itemsets in the presence of noise: algorithm and analysis. To appear in Proceedings of SDM 2006.
-
Proceedings of SDM 2006
-
-
Liu, J.1
Paulsen, S.2
Sun, X.3
Wang, W.4
Nobel, A.B.5
Prins, J.6
-
20
-
-
0039014242
-
The largest clique size in a random graph
-
Southern Methodist University, CS 7608
-
D. Matula. The largest clique size in a random graph. Southern Methodist University, Tech. Report, CS 7608, 1976.
-
(1976)
Tech. Report
-
-
Matula, D.1
-
22
-
-
51849177724
-
Some inequalities relating to the partial sum of binomial probabilities
-
M. Okamoto. Some inequalities relating to the partial sum of binomial probabilities. Annals of the Institute of Statistical Mathematics, 10: 29-35, 1958
-
(1958)
Annals of the Institute of Statistical Mathematics
, vol.10
, pp. 29-35
-
-
Okamoto, M.1
-
23
-
-
33746645256
-
Fault-tolerant frequent pattern mining: Problems and challenges
-
J. Pei, A.K. Tung, and J. Han. Fault-tolerant frequent pattern mining: Problems and challenges. Proceedings of DMKD'01, 2001.
-
(2001)
Proceedings of DMKD'01
-
-
Pei, J.1
Tung, A.K.2
Han, J.3
-
24
-
-
33745537736
-
Mining condensed frequent-pattern bases
-
J. Pei, G. Dong, W. Zou, and J. Han. Mining Condensed Frequent-Pattern Bases. Knowledge and Information Systems, 6(5): 570-594, 2002.
-
(2002)
Knowledge and Information Systems
, vol.6
, Issue.5
, pp. 570-594
-
-
Pei, J.1
Dong, G.2
Zou, W.3
Han, J.4
-
25
-
-
57249097446
-
Analysis of biclusters with applications to gene expression data
-
G. Park and W. Szpankowshi. Analysis of biclusters with applications to gene expression data. Proceeding of AoA'05, 2005.
-
(2005)
Proceeding of AoA'05
-
-
Park, G.1
Szpankowshi, W.2
-
28
-
-
11244306358
-
Discovering statistically significant biclusters in gene expression data
-
A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in gene expression data. Bioinformatics, 18(1): 136-144, 2002.
-
(2002)
Bioinformatics
, vol.18
, Issue.1
, pp. 136-144
-
-
Tanay, A.1
Sharan, R.2
Shamir, R.3
-
29
-
-
85145631432
-
Biclustering algorithms: A survey
-
Chapman & Hall/CRC, Computer and Information Science Series. In press
-
A. Tanay, R. Sharan and R. Shamir. Biclustering Algorithms: A Survey. In Handbook of Computational Molecular Biology, Chapman & Hall/CRC, Computer and Information Science Series, 2005. In press.
-
(2005)
Handbook of Computational Molecular Biology
-
-
Tanay, A.1
Sharan, R.2
Shamir, R.3
-
30
-
-
0003414440
-
Estimating the number of clusters in a dataset via gap statistic
-
Dept of Statistics, Stanford University
-
R. Tibshirani, G. Walther and T. Hastie. Estimating the number of clusters in a dataset via gap statistic. Technical Report 208, Dept of Statistics, Stanford University, 2000.
-
(2000)
Technical Report
, vol.208
-
-
Tibshirani, R.1
Walther, G.2
Hastie, T.3
-
31
-
-
0035789315
-
Efficient discovery of error-tolerant frequent itemsets in high dimensions
-
C. Yang, U. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant frequent itemsets in high dimensions. Proceedings of ACM SIGKDD'01, 194-203, 2001.
-
(2001)
Proceedings of ACM SIGKDD'01
, pp. 194-203
-
-
Yang, C.1
Fayyad, U.2
Bradley, P.S.3
|