메뉴 건너뛰기




Volumn 4005 LNAI, Issue , 2006, Pages 109-122

Significance and recovery of block structures in binary matrices with noise

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATA MINING; MATHEMATICAL MODELS; PROBLEM SOLVING; STATISTICAL MECHANICS; THEOREM PROVING;

EID: 33746089532     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11776420_11     Document Type: Conference Paper
Times cited : (1)

References (31)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. Proceedings of ACM SIGMOD'93, 207 -216, 1993.
    • (1993) Proceedings of ACM SIGMOD'93 , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 3
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos and P.Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. Proceedings of ACM SIGMOD'98, 94-105, 1998.
    • (1998) Proceedings of ACM SIGMOD'98 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 11
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • S.Dudoit and J. Fridlyand. Bagging to improve the accuracy of a clustering procedure. Bioinformatics, 19(9): 1090-1099, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 13
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. Proceedings of ACM SIGMOD'00, 1-12, 2000.
    • (2000) Proceedings of ACM SIGMOD'00 , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 17
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validation of clustering solution
    • T. Lange, V. Roth, M. Braun, and J. Buhmann. Stability-Based Validation of Clustering Solution. Neural Computation, 16(6): 1299-1323, 2004.
    • (2004) Neural Computation , vol.16 , Issue.6 , pp. 1299-1323
    • Lange, T.1    Roth, V.2    Braun, M.3    Buhmann, J.4
  • 19
  • 20
    • 0039014242 scopus 로고
    • The largest clique size in a random graph
    • Southern Methodist University, CS 7608
    • D. Matula. The largest clique size in a random graph. Southern Methodist University, Tech. Report, CS 7608, 1976.
    • (1976) Tech. Report
    • Matula, D.1
  • 22
    • 51849177724 scopus 로고
    • Some inequalities relating to the partial sum of binomial probabilities
    • M. Okamoto. Some inequalities relating to the partial sum of binomial probabilities. Annals of the Institute of Statistical Mathematics, 10: 29-35, 1958
    • (1958) Annals of the Institute of Statistical Mathematics , vol.10 , pp. 29-35
    • Okamoto, M.1
  • 23
    • 33746645256 scopus 로고    scopus 로고
    • Fault-tolerant frequent pattern mining: Problems and challenges
    • J. Pei, A.K. Tung, and J. Han. Fault-tolerant frequent pattern mining: Problems and challenges. Proceedings of DMKD'01, 2001.
    • (2001) Proceedings of DMKD'01
    • Pei, J.1    Tung, A.K.2    Han, J.3
  • 25
    • 57249097446 scopus 로고    scopus 로고
    • Analysis of biclusters with applications to gene expression data
    • G. Park and W. Szpankowshi. Analysis of biclusters with applications to gene expression data. Proceeding of AoA'05, 2005.
    • (2005) Proceeding of AoA'05
    • Park, G.1    Szpankowshi, W.2
  • 28
    • 11244306358 scopus 로고    scopus 로고
    • Discovering statistically significant biclusters in gene expression data
    • A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in gene expression data. Bioinformatics, 18(1): 136-144, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 136-144
    • Tanay, A.1    Sharan, R.2    Shamir, R.3
  • 29
    • 85145631432 scopus 로고    scopus 로고
    • Biclustering algorithms: A survey
    • Chapman & Hall/CRC, Computer and Information Science Series. In press
    • A. Tanay, R. Sharan and R. Shamir. Biclustering Algorithms: A Survey. In Handbook of Computational Molecular Biology, Chapman & Hall/CRC, Computer and Information Science Series, 2005. In press.
    • (2005) Handbook of Computational Molecular Biology
    • Tanay, A.1    Sharan, R.2    Shamir, R.3
  • 30
    • 0003414440 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset via gap statistic
    • Dept of Statistics, Stanford University
    • R. Tibshirani, G. Walther and T. Hastie. Estimating the number of clusters in a dataset via gap statistic. Technical Report 208, Dept of Statistics, Stanford University, 2000.
    • (2000) Technical Report , vol.208
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 31
    • 0035789315 scopus 로고    scopus 로고
    • Efficient discovery of error-tolerant frequent itemsets in high dimensions
    • C. Yang, U. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant frequent itemsets in high dimensions. Proceedings of ACM SIGKDD'01, 194-203, 2001.
    • (2001) Proceedings of ACM SIGKDD'01 , pp. 194-203
    • Yang, C.1    Fayyad, U.2    Bradley, P.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.