메뉴 건너뛰기




Volumn 3971 LNCS, Issue , 2006, Pages 1267-1272

Ensemble learning for keyphrases extraction from scientific document

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; METRIC SYSTEM; NATURAL LANGUAGE PROCESSING SYSTEMS; NEURAL NETWORKS;

EID: 33745926557     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11759966_188     Document Type: Conference Paper
Times cited : (4)

References (16)
  • 1
    • 84943258145 scopus 로고    scopus 로고
    • Using noun phrase heads to extract document keyphrases
    • Hamilton, H., Yang, Q. (eds.): Canadian AI 2000. Springer-Verlag, Berlin Heidelberg
    • Barker, K., Cornacchia, N.: Using Noun Phrase Heads to Extract Document Keyphrases. In: Hamilton, H., Yang, Q. (eds.): Canadian AI 2000. Lecture Notes in Artificial Intelligence, Vol. 1822. Springer-Verlag, Berlin Heidelberg (2000) 40 - 52
    • (2000) Lecture Notes in Artificial Intelligence , vol.1822 , pp. 40-52
    • Barker, K.1    Cornacchia, N.2
  • 2
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA
    • Blake, C., Keogh, E., Merz, C.J.: UCI Repository of Machine Learning Databases. Department of Information and Computer Science, University of California, Irvine, CA, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.htm
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Keogh, E.2    Merz, C.J.3
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging Predictors. Machine Learning 24 (2) (1996) 123 - 140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T.G.: An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning 40 (2000) 139-157
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 5
    • 0033907729 scopus 로고    scopus 로고
    • Machine learning for information extraction in informal domains
    • Freitag, D.: Machine Learning for Information Extraction in Informal Domains. Machine Learning 39 (2000) 169 - 202
    • (2000) Machine Learning , vol.39 , pp. 169-202
    • Freitag, D.1
  • 6
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-line Learning and An Application to Boosting. Journal of Computer and System Sciences 55(1) (1997) 119-139
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 7
    • 24344441635 scopus 로고    scopus 로고
    • Automatic extraction and learning of keyphrases from scientific articles
    • Gelbukh, A. (ed.): CICLing 2005. Springer-Verlag, Berlin Heidelberg
    • HaCohen-Kerner, Y., Gross, Z., Masa, A.: Automatic Extraction and Learning of Keyphrases from Scientific Articles. In: Gelbukh, A. (ed.): CICLing 2005. Lecture Notes in Computer Science, Vol. 3406. Springer-Verlag, Berlin Heidelberg (2005) 657 - 669
    • (2005) Lecture Notes in Computer Science , vol.3406 , pp. 657-669
    • Hacohen-Kerner, Y.1    Gross, Z.2    Masa, A.3
  • 8
    • 0028543366 scopus 로고
    • Training feed-forward networks with the marquardt algorithm
    • Hagan, M.T., Menhaj, M.: Training Feed-forward Networks with the Marquardt Algorithm. IEEE Transactions on Neural Networks 5(6) (1994) 989 - 993
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 10
    • 0036603927 scopus 로고    scopus 로고
    • Automatic extraction of document keyphrases for use in digital libraries: Evaluation and applications
    • Jones, S., Paynter, G.W.: Automatic Extraction of Document Keyphrases for Use in Digital Libraries: Evaluation and Applications. Journal of the American Society for Information Science and Technology 53(8) (2002) 653 - 677
    • (2002) Journal of the American Society for Information Science and Technology , vol.53 , Issue.8 , pp. 653-677
    • Jones, S.1    Paynter, G.W.2
  • 11
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R.E., Singer, Y.: Improved Boosting Algorithms Using Confidence-Rated Predictions. Machine Learning 37 (1999) 297 - 336
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 12
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in Search Strategies for Ensemble Feature Selection. Information Fusion 6 (2005) 83 - 98
    • (2005) Information Fusion , vol.6 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 13
    • 21844478478 scopus 로고    scopus 로고
    • Learning algorithms for keyphrase extraction
    • Turney, P.D.: Learning Algorithms for Keyphrase Extraction. Information Retrieval 2(4) (2000) 303 - 336
    • (2000) Information Retrieval , vol.2 , Issue.4 , pp. 303-336
    • Turney, P.D.1
  • 15
    • 33745930730 scopus 로고    scopus 로고
    • Keyphrases extraction from web document by the least squares support vector machine
    • Skowron, A., Agrawal, R., Luck, M., et al (eds.): IEEE Computer Society Press, Los Almitos, CA
    • Wang, J.B., Peng, H.: Keyphrases Extraction from Web Document by the Least Squares Support Vector Machine. In: Skowron, A., Agrawal, R., Luck, M., et al (eds.): Proceedings of 2005 IEEE/WIC/ACM International Conference on Web Intelligence. IEEE Computer Society Press, Los Almitos, CA (2005) 293 - 296
    • (2005) Proceedings of 2005 IEEE/WIC/ACM International Conference on Web Intelligence , pp. 293-296
    • Wang, J.B.1    Peng, H.2
  • 16
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than All
    • Zhou, Z.H., Wu, J.X., Tang, W,: Ensembling Neural Networks: Many Could Be Better Than All. Artificial Intelligence 137 (2002) 239 - 263
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.