-
1
-
-
0003802343
-
-
[BFOS84] Wadsworth International Group, Belmont, CA
-
[BFOS84] L. Breiman, J.H. Friedman, R.A. Olshen, and P.J. Stone. Classification and Regression Trees. Wadsworth International Group, Belmont, CA, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, P.J.4
-
2
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting and variants
-
[BK99]
-
[BK99] E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine Learning, 36(1,2), 1999.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
-
-
Bauer, E.1
Kohavi, R.2
-
3
-
-
0003408496
-
-
[BM98] Department of Information and Computer Sciences, University of California, Irvine
-
[BM98] C.L. Blake and C. J. Merz. UCI Repository of Machine Learning Databases http://www.ics.uci.edu/~mlearn/~MLRepository.html. Department of Information and Computer Sciences, University of California, Irvine, 1998.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
4
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
[Bra97]
-
[Bra97] A. P. Bradley. The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(6):1145-1159, 1997.
-
(1997)
Pattern Recognition
, vol.30
, Issue.6
, pp. 1145-1159
-
-
Bradley, A.P.1
-
5
-
-
0030211964
-
Bagging predictors
-
[Bre96]
-
[Bre96] L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
0346586663
-
SMOTE: Synthetic Minority Oversampling TEchnique
-
[CHKK02]
-
[CHKK02] N.V. Chawla, L.O. Hall, Bowyer K.W., and W.P. Kegelmeyer. SMOTE: Synthetic Minority Oversampling TEchnique. Journal of Artificial Intelligence Research, 16:321-357, 2002.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
7
-
-
0002428766
-
Learning to classify english text with ILP methods
-
[Coh95] Department of Computer Science, Katholieke Universiteit Leuven
-
[Coh95] W. Cohen. Learning to Classify English Text with ILP Methods. In Proceedings of the 5th International Workshop on Inductive Logic Programming, pages 3-24. Department of Computer Science, Katholieke Universiteit Leuven, 1995.
-
(1995)
Proceedings of the 5th International Workshop on Inductive Logic Programming
, pp. 3-24
-
-
Cohen, W.1
-
8
-
-
0000825041
-
Bayes and pseudo-bayes estimates of conditional probabilities and their reliabilities
-
[Cus93]
-
[Cus93] J. Cussents. Bayes and pseudo-bayes estimates of conditional probabilities and their reliabilities. In Proceedings of European Conference on Machine Learning, 1993.
-
(1993)
Proceedings of European Conference on Machine Learning
-
-
Cussents, J.1
-
10
-
-
0034250160
-
An empirical comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
[Die00]
-
[Die00] T. Dietterich. An empirical comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization. Machine Learning, 40(2):139 - 157, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.1
-
12
-
-
85105809948
-
Inductive learning algorithms and representations for text categorization
-
[DPHS98]
-
[DPHS98] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive Learning Algorithms and Representations for Text Categorization. In Proceedings of the Seventh International Conference on Information and Knowledge Management., pages 148-155, 1998.
-
(1998)
Proceedings of the Seventh International Conference on Information and Knowledge Management
, pp. 148-155
-
-
Dumais, S.1
Platt, J.2
Heckerman, D.3
Sahami, M.4
-
13
-
-
0012130233
-
Learning goal oriented bayesian networks for telecommunications risk management
-
[ESN96] Bari, Italy, Morgan Kauffman
-
[ESN96] J. Ezawa, K., M. Singh, and W. Norton, S. Learning Goal Oriented Bayesian Networks for Telecommunications Risk Management. In Proceedings of the International Conference on Machine Learning, ICML-96, pages 139-147, Bari, Italy, 1996. Morgan Kauffman.
-
(1996)
Proceedings of the International Conference on Machine Learning, ICML-96
, pp. 139-147
-
-
Ezawa, J.1
Singh, K.M.2
Norton, W.S.3
-
16
-
-
0002345034
-
The comparison und evaluation of forecasters
-
[GF83]
-
[GF83] M. Do Groot and S. Fionberg. The Comparison und Evaluation of Forecasters. Statistician, 32:12 - 22, 1983.
-
(1983)
Statistician
, vol.32
, pp. 12-22
-
-
Do Groot, M.1
Fionberg, S.2
-
18
-
-
33845536164
-
The class imbalance problem: A systematic study
-
[JS02]
-
[JS02] N. Japkowicz and S. Stephen, The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5), 2002.
-
(2002)
Intelligent Data Analysis
, vol.6
, Issue.5
-
-
Japkowicz, N.1
Stephen, S.2
-
19
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar images
-
[KHM98]
-
[KHM98] M. Kubat, R. Holte, and S. Matwin. Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Machine Learning, 30:195-215, 1998.
-
(1998)
Machine Learning
, vol.30
, pp. 195-215
-
-
Kubat, M.1
Holte, R.2
Matwin, S.3
-
20
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
[KW03]
-
[KW03] L. Kuncheva and C. Whitaker. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51:181-207, 2003.
-
(2003)
Machine Learning
, vol.51
, pp. 181-207
-
-
Kuncheva, L.1
Whitaker, C.2
-
23
-
-
0026170884
-
Logical versus analogical, symbolic versus connectionist, neat versus scruffy
-
[Min91]
-
[Min91] M. Minsky. Logical versus analogical, symbolic versus connectionist, neat versus scruffy. AI Magazine, 12, 1991.
-
(1991)
AI Magazine
, vol.12
-
-
Minsky, M.1
-
24
-
-
0042346121
-
Tree induction for probability-based rankings
-
[PD03]
-
[PD03] F. Provost and P. Domingos, Tree induction for probability-based rankings, Machine Learning, 52(3), 2003.
-
(2003)
Machine Learning
, vol.52
, Issue.3
-
-
Provost, F.1
Domingos, P.2
-
25
-
-
0002900357
-
The case against accuracy estimation for comparing induction algorithms
-
[PFK98] Madison, WI, Morgan Kauffrnann
-
[PFK98] F. Provost, T. Fawcett, and R. Kohavi. The Case Against Accuracy Estimation for Comparing Induction Algorithms. In Proceedings of the Fifteenth International Conference on Machine Learning, pages 445-453, Madison, WI, 1998. Morgan Kauffrnann.
-
(1998)
Proceedings of the Fifteenth International Conference on Machine Learning
, pp. 445-453
-
-
Provost, F.1
Fawcett, T.2
Kohavi, R.3
-
26
-
-
85041528332
-
Reducing misclassification costs
-
[PMM+94]
-
[PMM+94] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk. Reducing misclassification costs, In Proceedings of the Eleventh International Conference on Machine Learning, pages 217-215, 1994.
-
(1994)
Proceedings of the Eleventh International Conference on Machine Learning
, pp. 217-1215
-
-
Pazzani, M.1
Merz, C.2
Murphy, P.3
Ali, K.4
Hume, T.5
Brunk, C.6
-
31
-
-
33646056708
-
Evolutionary ensembles: Combining learning agents using genetic algorithms
-
[SC05]
-
[SC05] J. Sylvester and N. V. Chawla. Evolutionary ensembles: Combining learning agents using genetic algorithms. In AAAI Workshop on Multiagent Learning, pages 46-51, 2005.
-
(2005)
AAAI Workshop on Multiagent Learning
, pp. 46-51
-
-
Sylvester, J.1
Chawla, N.V.2
-
33
-
-
0000519688
-
Comparative evaluation of pattern recognition techniques for detection of microcalcifications in mammography
-
[WDB+93]
-
[WDB+93] K. Woods, C. Doss, K. Bowyer, J. Solka, C. Priebe, and P. Kegelmeyer. Comparative Evaluation of Pattern Recognition Techniques for Detection of Microcalcifications in Mammography. International Journal of Pattern Recognition and Artificial Intelligence, 7(6):1417-1436, 1993.
-
(1993)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.7
, Issue.6
, pp. 1417-1436
-
-
Woods, K.1
Doss, C.2
Bowyer, K.3
Solka, J.4
Priebe, C.5
Kegelmeyer, P.6
|