-
1
-
-
0003923653
-
The Geometry of Ordinary Variational Equations
-
Springer, Berlin
-
O. Krupkova, “The Geometry of Ordinary Variational Equations,” Lecture Notes in Mathematics 1678, Springer, Berlin, 1997.
-
(1997)
Lecture Notes in Mathematics
, vol.1678
-
-
Krupkova, O.1
-
2
-
-
0038805146
-
Simple mechanical control systems with constraints and symmetry
-
J. Cortés, S. Martínez, J. P. Ostrowski, and H. Zhang, “Simple mechanical control systems with constraints and symmetry,” SIAM Journal on Control and Optimization, Vol.41, No.3, pp. 851-874, 2002.
-
(2002)
SIAM Journal on Control and Optimization
, vol.41
, Issue.3
, pp. 851-874
-
-
Cortés, J.1
Martínez, S.2
Ostrowski, J. P.3
Zhang, H.4
-
3
-
-
0036687034
-
On nonlinear controllability and series expansions for Lagrangian systems with dissipative forces
-
J. Cortés, S. Martínez, and F. Bullo, “On nonlinear controllability and series expansions for Lagrangian systems with dissipative forces,” IEEE Transactions on Automatic Control, Vol.47, No.8, pp. 1396-1401, 2002.
-
(2002)
IEEE Transactions on Automatic Control
, vol.47
, Issue.8
, pp. 1396-1401
-
-
Cortés, J.1
Martínez, S.2
Bullo, F.3
-
4
-
-
0030651602
-
Analysis and Design of Fractional-Order Digital Control Systems
-
J. A. Tenreiro Machado, “Analysis and Design of Fractional-Order Digital Control Systems,” J. System Analysis, Modelling and Simulation, Vol.27, pp. 107-122, 1997.
-
(1997)
J. System Analysis, Modelling and Simulation
, vol.27
, pp. 107-122
-
-
Tenreiro Machado, J. A.1
-
9
-
-
0003427295
-
-
(ed), World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong
-
R. Hilfer (ed.), “Applications of Fractional Calculus in Physics,” World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 2000.
-
(2000)
Applications of Fractional Calculus in Physics
-
-
Hilfer, R.1
-
10
-
-
0141930931
-
A new Lagrangian and a new Lagrange equation of motion for fractionally damped systems
-
O. P. Agrawal, “A new Lagrangian and a new Lagrange equation of motion for fractionally damped systems,” J. Appl. Mech-T Asme, Vol.68, No.2, pp. 339-341, 2001.
-
(2001)
J. Appl. Mech-T Asme
, vol.68
, Issue.2
, pp. 339-341
-
-
Agrawal, O. P.1
-
11
-
-
0141921521
-
The intrinsic damping of the fractional oscillator
-
A. Tofighi, “The intrinsic damping of the fractional oscillator,” Phys. A, Vol.329, No.1-2, pp. 29-34, 2003.
-
(2003)
Phys. A
, vol.329
, Issue.1-2
, pp. 29-34
-
-
Tofighi, A.1
-
12
-
-
0036554885
-
A numerical scheme for dynamic systems containing fractional derivatives
-
L. X. Yuan, and O. P. Agrawal, “A numerical scheme for dynamic systems containing fractional derivatives,” Journ. Vib. Acoust, Vol.124, No.2, pp. 321-324, 2002.
-
(2002)
Journ. Vib. Acoust
, vol.124
, Issue.2
, pp. 321-324
-
-
Yuan, L. X.1
Agrawal, O. P.2
-
13
-
-
0000735791
-
Nonconservative Lagrangian and Hamiltonian mechanics
-
F. Riewe, “Nonconservative Lagrangian and Hamiltonian mechanics,” Phys. Rev. E, Vol.53, pp. 1890-1889, 1996.
-
(1996)
Phys. Rev. E
, vol.53
, pp. 1890-1889
-
-
Riewe, F.1
-
14
-
-
4243530410
-
Mechanics with fractional derivatives
-
F. Riewe, “Mechanics with fractional derivatives,” Phys. Rev. E, Vol.55, pp. 3582-3592, 1997.
-
(1997)
Phys. Rev. E
, vol.55
, pp. 3582-3592
-
-
Riewe, F.1
-
15
-
-
0142010055
-
On the initial conditions in continuous-time fractional linear systems
-
M. D. Ortigueira, “On the initial conditions in continuous-time fractional linear systems,” Signal Processing, Vol.83, No.11, pp. 2301-2309, 2003.
-
(2003)
Signal Processing
, vol.83
, Issue.11
, pp. 2301-2309
-
-
Ortigueira, M. D.1
-
16
-
-
0036701004
-
Formulation of Euler-Lagrange equations for fractional variational problems
-
O. Agrawal, “Formulation of Euler-Lagrange equations for fractional variational problems,” J. Math. Anal. Appl., Vol.272, pp. 368-379, 2002.
-
(2002)
J. Math. Anal. Appl
, vol.272
, pp. 368-379
-
-
Agrawal, O.1
-
17
-
-
0141930931
-
Lagrangian and Lagrange equation of motion for fractionally damped systems
-
O. Agrawal, “Lagrangian and Lagrange equation of motion for fractionally damped systems,” Transactions of the ASME, J. Appl. Mech., Vol.68, No.2, pp. 339-341, 2002.
-
(2002)
Transactions of the ASME, J. Appl. Mech
, vol.68
, Issue.2
, pp. 339-341
-
-
Agrawal, O.1
-
18
-
-
4043139312
-
Lagrangians with linear velocities within Riemann-Liouville fractional derivatives
-
Vol
-
D. Baleanu, and T. Avkar, “Lagrangians with linear velocities within Riemann-Liouville fractional derivatives,” Nuovo Cimento B, Vol.119(1), pp. 73-79, 2004.
-
(2004)
Nuovo Cimento B
, vol.119
, Issue.1
, pp. 73-79
-
-
Baleanu, D.1
Avkar, T.2
-
19
-
-
0002591316
-
On the geometry of singular Lagragians
-
F. Pugliese, and A. M. Vinogradov, “On the geometry of singular Lagragians,” J. Geom. Phys., Vol.35, No.1, pp. 35-55, 2000.
-
(2000)
J. Geom. Phys
, vol.35
, Issue.1
, pp. 35-55
-
-
Pugliese, F.1
Vinogradov, A. M.2
-
20
-
-
0141726756
-
Geometric reduction in optimal control theory with symmetries
-
J. Echeverria-Enriquez, J. Marin-Solano, M. C. Munoz-Lecanda, and N. Roman-Roy, “Geometric reduction in optimal control theory with symmetries,” Rep. Math. Phys., Vol.52, No.1, pp. 89-113, 2003.
-
(2003)
Rep. Math. Phys
, vol.52
, Issue.1
, pp. 89-113
-
-
Echeverria-Enriquez, J.1
Marin-Solano, J.2
Munoz-Lecanda, M. C.3
Roman-Roy, N.4
-
21
-
-
0002765145
-
A geometric approach to Noether's second theorem in time-dependent Lagrangian mechanics
-
J. F. Carinena, J. Fernandez-Nunez, and E. Martinez, “A geometric approach to Noether's second theorem in time-dependent Lagrangian mechanics,” Lett. Math. Phys., Vol.23, pp. 51-63, 1991.
-
(1991)
Lett. Math. Phys
, vol.23
, pp. 51-63
-
-
Carinena, J. F.1
Fernandez-Nunez, J.2
Martinez, E.3
-
22
-
-
4243449996
-
Determination of the Hamiltonian in the presence of constraints
-
R. Cayley, “Determination of the Hamiltonian in the presence of constraints,” Phys. Rev. Lett., Vol.42, pp. 413-416, 1979.
-
(1979)
Phys. Rev. Lett
, vol.42
, pp. 413-416
-
-
Cayley, R.1
|