-
2
-
-
0003318097
-
Mathematical aspects of classical and celestial mechanics
-
Springer, Berlin
-
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, in Dynamical Systems III, Springer, Berlin 1988.
-
(1988)
Dynamical Systems III
-
-
Arnold, V.I.1
Kozlov, V.V.2
Neishtadt, A.I.3
-
4
-
-
0141702747
-
Optimal control and implicit Hamiltonian systems
-
(Eds. A. Isidori, F. Lamnabhi-Lagarrigue, W. Respondek), Springer, LNCIS
-
G. Blankensteinand A. J. Van der Schaft, Optimal control and implicit Hamiltonian systems, Nonlinear Control in the Year 2000, (Eds. A. Isidori, F. Lamnabhi-Lagarrigue, W. Respondek), Springer, LNCIS 258 (2000), 185-206.
-
(2000)
Nonlinear Control in the Year 2000
, vol.258
, pp. 185-206
-
-
Blankensteinand, G.1
Van der Schaft, A.J.2
-
5
-
-
0007028841
-
Optimal control, optimization and analytical mechanics
-
L. Bailieul and J. C. Willems (eds.), Springer
-
A. Bloch and P. Crouch: Optimal control, optimization and analytical mechanics, in Mathematical Control Theory, L. Bailieul and J. C. Willems (eds.), Springer 1999, 265-321.
-
(1999)
Mathematical Control Theory
, pp. 265-321
-
-
Bloch, A.1
Crouch, P.2
-
6
-
-
0000699467
-
Systems theory on group manifolds and coset spaces
-
R. W. Brocket: Systems theory on group manifolds and coset spaces, SIAM J. Control Optim. 10 (1970), 265-284.
-
(1970)
SIAM J. Control Optim.
, vol.10
, pp. 265-284
-
-
Brocket, R.W.1
-
7
-
-
0000871390
-
Lie theory and control systems defined on spheres
-
R. W. Brocket: Lie theory and control systems defined on spheres, SIAM J. Appl. Math. 10 (1973), 213-225.
-
(1973)
SIAM J. Appl. Math.
, vol.10
, pp. 213-225
-
-
Brocket, R.W.1
-
8
-
-
84990727291
-
Theory of singular Lagrangians
-
J. F. Cariñena: Theory of singular Lagrangians, Fortschr. Rhys. 38 (1990), 641-679.
-
(1990)
Fortschr. Rhys.
, vol.38
, pp. 641-679
-
-
Cariñena, J.F.1
-
10
-
-
4243293408
-
Optimal control with symmetries and integrability
-
preprint
-
M. Delgado and A. Ibort: Optimal control with symmetries and integrability, preprint 2000.
-
(2000)
-
-
Delgado, M.1
Ibort, A.2
-
12
-
-
0000082862
-
The Hamilton-Cartan formalism in the calculus of variations
-
H. Goldschmidt and S. Sternberg: The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier 23 (1973), 203-267.
-
(1973)
Ann. Inst. Fourier
, vol.23
, pp. 203-267
-
-
Goldschmidt, H.1
Sternberg, S.2
-
13
-
-
36749116497
-
Presymplectic manifolds and the Dirac-Bergmann theory of constraints
-
M. J. Gotay, J. M. Nester and G. Hinds: Presymplectic manifolds and the Dirac-Bergmann theory of constraints, J. Math. Phys. 27 (1978), 2388-2399.
-
(1978)
J. Math. Phys.
, vol.27
, pp. 2388-2399
-
-
Gotay, M.J.1
Nester, J.M.2
Hinds, G.3
-
14
-
-
0034134940
-
Fibre derivatives: Some applications to singular Lagrangians
-
X. Gràcia: Fibre derivatives: some applications to singular Lagrangians, Rep. Math. Phys. 45 (2000), 67-84.
-
(2000)
Rep. Math. Phys.
, vol.45
, pp. 67-84
-
-
Gràcia, X.1
-
15
-
-
0041704864
-
Some geometric aspects of variational calculus in constrained systems
-
X. Gràcia, J. Marín-Solano and M. C. Muñoz-Lecanda: Some geometric aspects of variational calculus in constrained systems, Rep. Math. Phys 51(1) (2003), 127-148.
-
(2003)
Rep. Math. Phys
, vol.51
, Issue.1
, pp. 127-148
-
-
Gràcia, X.1
Marín-Solano, J.2
Muñoz-Lecanda, M.C.3
-
17
-
-
85053509421
-
Equivalence and invariants of Nonlinear Control Systems
-
H. J. Sussmann (ed.), Marcel Dekker, New York-Basel
-
B. Jackubczyk: Equivalence and invariants of Nonlinear Control Systems, in Nonlinear Controllability and Optimal Control. H. J. Sussmann (ed.), Marcel Dekker, New York-Basel 1990, 177-218.
-
(1990)
Nonlinear Controllability and Optimal Control
, pp. 177-218
-
-
Jackubczyk, B.1
-
18
-
-
0002267177
-
Symmetries of nonlinear control systems and their symbols
-
B. Jakubczyk: Symmetries of nonlinear control systems and their symbols, Canadian Math. Conf. Proceed. 25 (1998), 183-198.
-
(1998)
Canadian Math. Conf. Proceed.
, vol.25
, pp. 183-198
-
-
Jakubczyk, B.1
-
19
-
-
0000819829
-
Casimir elements and optimal control
-
B. Jakubczyk, W. Respondek and T. Rzezuchowski (eds.), Banach Center Pub. Warsaw
-
V. Jurdjevic: Casimir elements and optimal control, in Geometry in Nonlinear Control and Differential Inclusions. B. Jakubczyk, W. Respondek and T. Rzezuchowski (eds.), Banach Center Pub. 32, Warsaw 1995, pp. 261-275.
-
(1995)
Geometry in Nonlinear Control and Differential Inclusions
, vol.32
, pp. 261-275
-
-
Jurdjevic, V.1
-
21
-
-
0000194890
-
Reduction of Constrained Mechanical Systems and Stability of Relative Equilibria
-
C. L. Marle: Reduction of Constrained Mechanical Systems and Stability of Relative Equilibria, Comun. Math. Phys. 174 (1995), 295-318.
-
(1995)
Comun. Math. Phys.
, vol.174
, pp. 295-318
-
-
Marle, C.L.1
-
22
-
-
0004113823
-
-
Wiley, New York
-
G. Marmo, E. J. Saletan, A. Simoni and B. Vitale: Dynamical Systems, a Differential Geometric Approach to Symmetry and Reduction, Wiley, New York 1985.
-
(1985)
Dynamical Systems, a Differential Geometric Approach to Symmetry and Reduction
-
-
Marmo, G.1
Saletan, E.J.2
Simoni, A.3
Vitale, B.4
-
23
-
-
49549151837
-
Reduction of symplectic manifolds with symmetry
-
J. E. Marsden and A. Weinstein: Reduction of symplectic manifolds with symmetry, Rep. Math. Phys. 5 (1974), 121-130.
-
(1974)
Rep. Math. Phys.
, vol.5
, pp. 121-130
-
-
Marsden, J.E.1
Weinstein, A.2
-
24
-
-
0041906641
-
Symmetries in vakonomic dynamics. Applications to optimal control
-
S. Martínez, J. Cortés and M. de León: Symmetries in vakonomic dynamics. Applications to optimal control, J. Geom. Phys. 38(3-4) (2001), 343-365.
-
(2001)
J. Geom. Phys.
, vol.38
, Issue.3-4
, pp. 343-365
-
-
Martínez, S.1
Cortés, J.2
de León, M.3
-
28
-
-
0037093638
-
Nonlinearizable analytic single-input control systems do not admit stationary symmetries
-
W. Respondek and I. A. Tall: Nonlinearizable analytic single-input control systems do not admit stationary symmetries, Systems and Control Lett. 46 (2002), 1-16.
-
(2002)
Systems and Control Lett.
, vol.46
, pp. 1-16
-
-
Respondek, W.1
Tall, I.A.2
-
31
-
-
0008842396
-
Symmetries and integrals of motion in Optimal Control
-
A. Fryszkowski, B. Jakubczyk, W. Respondek, T. Rzezuchowski (eds.), Banach Center Pubs. Math. Inst. Polish Acad. Sci., Warsaw, Poland
-
H. J. Sussmann: Symmetries and integrals of motion in Optimal Control, in Geometry in Nonlinear Control and Differential Inclusions, A. Fryszkowski, B. Jakubczyk, W. Respondek, T. Rzezuchowski (eds.), Banach Center Pubs. 32. Math. Inst. Polish Acad. Sci., Warsaw, Poland (1995). 379-393.
-
(1995)
Geometry in Nonlinear Control and Differential Inclusions
, vol.32
, pp. 379-393
-
-
Sussmann, H.J.1
-
32
-
-
0001590046
-
An introduction to the coordinate-free maximum principle. Geometry of feedback and optimal control
-
Dekker, New York
-
H. J. Sussmann: An introduction to the coordinate-free maximum principle. Geometry of feedback and optimal control, Monogr. Textbooks Pure Appl. Math., 207, Dekker, New York, 1998, 463-557.
-
(1998)
Monogr. Textbooks Pure Appl. Math.
, vol.207
, pp. 463-557
-
-
Sussmann, H.J.1
-
33
-
-
0002671270
-
Geometry and Optimal Control
-
L. Bailieul and J. C. Willems (eds.), Springer
-
H. J. Sussmann: Geometry and Optimal Control, in Mathematical Control Theory, L. Bailieul and J. C. Willems (eds.), Springer (1999), 39-49.
-
(1999)
Mathematical Control Theory
, pp. 39-49
-
-
Sussmann, H.J.1
-
34
-
-
23044528665
-
Conservation laws in optimal control
-
F. Colonius and L. Grune (eds.), Lecture Notes in Control and Information Sciences, Springer
-
D. Torres: Conservation laws in optimal control, in Dynamics, Bifurcations and Control. F. Colonius and L. Grune (eds.), Lecture Notes in Control and Information Sciences, Springer 2002.
-
(2002)
Dynamics, Bifurcations and Control
-
-
Torres, D.1
|