메뉴 건너뛰기




Volumn , Issue , 2005, Pages 421-428

WAM-Miner: In the search of Web access motifs from historical Web log data

Author keywords

Dynamic Pattern; Web Access Motif; Web Usage Mining

Indexed keywords

ALGORITHMS; COMPETITIVE INTELLIGENCE; DATA MINING; DATA PROCESSING; INFORMATION TECHNOLOGY; INTELLIGENT AGENTS; KNOWLEDGE ACQUISITION; STATISTICAL METHODS; WORLD WIDE WEB;

EID: 33745803700     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (23)
  • 1
    • 33745778164 scopus 로고    scopus 로고
    • Internet traffic archive
    • http://ita.ee.lbl.gov/. Internet traffic archive.
  • 2
    • 0029212693 scopus 로고
    • Mining sequential patterns
    • R. Agrawal and R. Srikant. Mining sequential patterns. ICDE, 3-14, 1995.
    • (1995) ICDE , pp. 3-14
    • Agrawal, R.1    Srikant, R.2
  • 3
    • 85011106926 scopus 로고    scopus 로고
    • Efficient scheduling of internet banner advertisements
    • A. Amiri and S. Menon. Efficient scheduling of internet banner advertisements. ACM TOIT, 3(4):334-346, 2003.
    • (2003) ACM TOIT , vol.3 , Issue.4 , pp. 334-346
    • Amiri, A.1    Menon, S.2
  • 4
    • 33745767871 scopus 로고    scopus 로고
    • Efficient monitoring patterns in data mining environments
    • S. Baron, M. Spiliopoulou, and O. Gnther. Efficient monitoring patterns In data mining environments. ADBIS, 253-265, 2003.
    • (2003) ADBIS , pp. 253-265
    • Baron, S.1    Spiliopoulou, M.2    Gnther, O.3
  • 6
    • 0032028932 scopus 로고
    • Efficient data mining for path traversal patterns
    • M.-S. Chen, J. S. Park, and P. S. Yu. Efficient data mining for path traversal patterns. TKDE, 10(2):209-221, 1898.
    • (1898) TKDE , vol.10 , Issue.2 , pp. 209-221
    • Chen, M.-S.1    Park, J.S.2    Yu, P.S.3
  • 7
    • 33745783874 scopus 로고
    • A framework for measuring changes in data characteristics
    • V. Ganti, J. Gehrke, and R. Ramakrishnan. A framework for measuring changes in data characteristics. PODS, 1900.
    • (1900) PODS
    • Ganti, V.1    Gehrke, J.2    Ramakrishnan, R.3
  • 10
    • 48649102014 scopus 로고    scopus 로고
    • A web page prediction model based on click-stream tree representation of user behavior
    • S. Gunduz and M. T. Ozsu. A web page prediction model based on click-stream tree representation of user behavior. SIGKDD, 635-540, 2003.
    • (2003) SIGKDD , pp. 635-1540
    • Gunduz, S.1    Ozsu, M.T.2
  • 11
    • 33745772915 scopus 로고    scopus 로고
    • Discovery of interesting association rules from livelink web log data
    • X. Huang, A. An, N. Cercone, and G. Promhouse. Discovery of interesting association rules from livelink web log data. ICDM, 763-766, 2002.
    • (2002) ICDM , pp. 763-766
    • Huang, X.1    An, A.2    Cercone, N.3    Promhouse, G.4
  • 12
    • 65549124771 scopus 로고    scopus 로고
    • Web sessions clustering with artificial ants colonies
    • N. Labroche, N. Monmarche, and G. Venturini. Web sessions clustering with artificial ants colonies. WWW, 2003.
    • (2003) WWW
    • Labroche, N.1    Monmarche, N.2    Venturini, G.3
  • 13
    • 84947729457 scopus 로고    scopus 로고
    • Classification pruning for web-request prediction
    • T. Li, Q. Yang, and K. Wang:. Classification pruning for web-request prediction. WWW, 2001.
    • (2001) WWW
    • Li, T.1    Yang, Q.2    Wang, K.3
  • 14
    • 0035789625 scopus 로고    scopus 로고
    • Discovering the set of fundamental rule changes
    • B. Liu, W. Hsu, and Y. Ma. Discovering the set of fundamental rule changes. In Proc. of SIGKDD, 335-340, 2001.
    • (2001) Proc. of SIGKDD , pp. 335-340
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 15
    • 84980363232 scopus 로고    scopus 로고
    • Creating adaptive web sites through usage-based clustering of URLs
    • B. Mobasher, R. Cooley, and J. Srivastava. Creating adaptive web sites through usage-based clustering of URLs. IEEE KDEX Workshop, 1999.
    • (1999) IEEE KDEX Workshop
    • Mobasher, B.1    Cooley, R.2    Srivastava, J.3
  • 17
    • 78149320187 scopus 로고    scopus 로고
    • H-Mine: Hyper-structure mining of frequent patterns in large databases
    • J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-Mine: hyper-structure mining of frequent patterns in large databases. ICDM, 441-448, 2001.
    • (2001) ICDM , pp. 441-448
    • Pei, J.1    Han, J.2    Lu, H.3    Nishio, S.4    Tang, S.5    Yang, D.6
  • 18
    • 77957967271 scopus 로고    scopus 로고
    • Mining access patterns efficiently from web logs
    • J. Pei, J. Han, B. Mortazavi-asl, and H. Zhu. Mining access patterns efficiently from web logs. PAKDD, 396-407, 2000.
    • (2000) PAKDD , pp. 396-407
    • Pei, J.1    Han, J.2    Mortazavi-Asl, B.3    Zhu, H.4
  • 19
    • 0002000090 scopus 로고    scopus 로고
    • Web usage mining: Discovery and applications of usage patterns from web data
    • J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations, 1(2):12-23, 2000.
    • (2000) SIGKDD Explorations , vol.1 , Issue.2 , pp. 12-23
    • Srivastava, J.1    Cooley, R.2    Deshpande, M.3    Tan, P.-N.4
  • 21
    • 0035501283 scopus 로고    scopus 로고
    • Efficient mining of traversal patterns
    • Y. Xiao and M. H. Dunham. Efficient mining of traversal patterns. DKE, 39(2):191-214, 2001.
    • (2001) DKE , vol.39 , Issue.2 , pp. 191-214
    • Xiao, Y.1    Dunham, M.H.2
  • 22
    • 12244304650 scopus 로고    scopus 로고
    • Efficient data mining for maximal frequent subtrees
    • Y. Xiao, J.-F Yao, Z. Li, and M. K. Dunham. Efficient data mining for maximal frequent subtrees. ICDM, 379-386, 2003.
    • (2003) ICDM , pp. 379-386
    • Xiao, Y.1    Yao, J.-F.2    Li, Z.3    Dunham, M.K.4
  • 23
    • 0242709382 scopus 로고    scopus 로고
    • Efficiently mining frequent trees in a forest
    • M. J. Zaki. Efficiently mining frequent trees in a forest. SIGKDD, 2002.
    • (2002) SIGKDD
    • Zaki, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.