메뉴 건너뛰기




Volumn , Issue , 2001, Pages 441-448

H-mine: Hyper-structure mining of frequent patterns in large databases

Author keywords

[No Author keywords available]

Indexed keywords


EID: 78149320187     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (331)

References (17)
  • 2
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and R Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD'98, pages 94-105.
    • SIGMOD'98 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, R.4
  • 3
    • 0002221136 scopus 로고    scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB'94, pages 487-499.
    • VLDB'94 , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 4
    • 0032091573 scopus 로고    scopus 로고
    • Efficiently mining long patterns from databases
    • R. J. Bayardo. Efficiently mining long patterns from databases. In SIGMOD'98, pages 85-93.
    • SIGMOD'98 , pp. 85-93
    • Bayardo, R.J.1
  • 5
    • 78149289736 scopus 로고    scopus 로고
    • Constraint-based rule mining on large, dense data sets
    • R. J. Bayardo, R. Agrawal, and D. Gunopulos. Constraint-based rule mining on large, dense data sets. In ICDE'99.
    • ICDE'99
    • Bayardo, R.J.1    Agrawal, R.2    Gunopulos, D.3
  • 6
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • J. Han, J. Pei, ana Y. Yin. Mining frequent patterns without candidate generation. In SIGMOD'00, pages 1-12.
    • SIGMOD'00 , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 7
    • 0002776254 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In KDD'98, pages 80-86.
    • KDD'98 , pp. 80-86
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 8
    • 0001280495 scopus 로고    scopus 로고
    • Efficient algorithms for discovering association rules
    • H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. In KDD'94, pages 181-192.
    • KDD'94 , pp. 181-192
    • Mannila, H.1    Toivonen, H.2    Verkamo, A.I.3
  • 9
    • 0032092760 scopus 로고    scopus 로고
    • Exploratory mining and pruning optimizations of constrained associations rules
    • R. Ng, L. V. S. Lakshmanan, I. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained associations rules. In SIGMOD'98, pages 13-24.
    • SIGMOD'98 , pp. 13-24
    • Ng, R.1    Lakshmanan, L.V.S.2    Han, I.3    Pang, A.4
  • 10
    • 0035016447 scopus 로고    scopus 로고
    • Mining frequent itemsets with convertible constraints
    • J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets with convertible constraints. In ICDE'01, pages 433-332.
    • ICDE'01 , pp. 433-1332
    • Pei, J.1    Han, J.2    Lakshmanan, L.V.S.3
  • 12
    • 0035016443 scopus 로고    scopus 로고
    • PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth
    • J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In ICDE'01, pages 215-224.
    • ICDE'01 , pp. 215-224
    • Pei, J.1    Han, J.2    Mortazavi-Asl, B.3    Pinto, H.4    Chen, Q.5    Dayal, U.6    Hsu, M.-C.7
  • 13
    • 0002082858 scopus 로고    scopus 로고
    • An efficient algorithm for mining association rules in large databases
    • A. Savasere, t. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. In VLDB '95, pages 432-443.
    • VLDB '95 , pp. 432-443
    • Savasere, A.1    Omiecinski, T.2    Navathe, S.3
  • 14
    • 0030157416 scopus 로고    scopus 로고
    • Mining quantitative association rules in large relational tables
    • R. Srikant ana R. Agrawal. Mining quantitative association rules in large relational tables. In SIGMOD'96, pages 1-12.
    • SIGMOD'96 , pp. 1-12
    • Srikant, R.1    Agrawal, R.2
  • 15
    • 84897708583 scopus 로고    scopus 로고
    • Mining sequential patterns: Generalizations and performance improvements
    • R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. In EDBT'96, pages 3-17.
    • EDBT'96 , pp. 3-17
    • Srikant, R.1    Agrawal, R.2
  • 16
    • 0000370733 scopus 로고    scopus 로고
    • Building hierarchical classifiers using class proximity
    • K. wang, S. Zhou, and S. C. Liew. Building hierarchical classifiers using class proximity. In VLDB'99, pages 363-374.
    • VLDB'99 , pp. 363-374
    • Wang, K.1    Zhou, S.2    Liew, S.C.3
  • 17
    • 0034592942 scopus 로고    scopus 로고
    • Generating non-redundant association rules
    • M. Zaki. Generating non-redundant association rules. In KDD'00, pages 34-43.
    • KDD'00 , pp. 34-43
    • Zaki, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.