-
2
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and R Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD'98, pages 94-105.
-
SIGMOD'98
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, R.4
-
3
-
-
0002221136
-
Fast algorithms for mining association rules
-
R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB'94, pages 487-499.
-
VLDB'94
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
4
-
-
0032091573
-
Efficiently mining long patterns from databases
-
R. J. Bayardo. Efficiently mining long patterns from databases. In SIGMOD'98, pages 85-93.
-
SIGMOD'98
, pp. 85-93
-
-
Bayardo, R.J.1
-
6
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
J. Han, J. Pei, ana Y. Yin. Mining frequent patterns without candidate generation. In SIGMOD'00, pages 1-12.
-
SIGMOD'00
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
7
-
-
0002776254
-
Integrating classification and association rule mining
-
B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In KDD'98, pages 80-86.
-
KDD'98
, pp. 80-86
-
-
Liu, B.1
Hsu, W.2
Ma, Y.3
-
8
-
-
0001280495
-
Efficient algorithms for discovering association rules
-
H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. In KDD'94, pages 181-192.
-
KDD'94
, pp. 181-192
-
-
Mannila, H.1
Toivonen, H.2
Verkamo, A.I.3
-
9
-
-
0032092760
-
Exploratory mining and pruning optimizations of constrained associations rules
-
R. Ng, L. V. S. Lakshmanan, I. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained associations rules. In SIGMOD'98, pages 13-24.
-
SIGMOD'98
, pp. 13-24
-
-
Ng, R.1
Lakshmanan, L.V.S.2
Han, I.3
Pang, A.4
-
10
-
-
0035016447
-
Mining frequent itemsets with convertible constraints
-
J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets with convertible constraints. In ICDE'01, pages 433-332.
-
ICDE'01
, pp. 433-1332
-
-
Pei, J.1
Han, J.2
Lakshmanan, L.V.S.3
-
12
-
-
0035016443
-
PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth
-
J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In ICDE'01, pages 215-224.
-
ICDE'01
, pp. 215-224
-
-
Pei, J.1
Han, J.2
Mortazavi-Asl, B.3
Pinto, H.4
Chen, Q.5
Dayal, U.6
Hsu, M.-C.7
-
13
-
-
0002082858
-
An efficient algorithm for mining association rules in large databases
-
A. Savasere, t. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. In VLDB '95, pages 432-443.
-
VLDB '95
, pp. 432-443
-
-
Savasere, A.1
Omiecinski, T.2
Navathe, S.3
-
14
-
-
0030157416
-
Mining quantitative association rules in large relational tables
-
R. Srikant ana R. Agrawal. Mining quantitative association rules in large relational tables. In SIGMOD'96, pages 1-12.
-
SIGMOD'96
, pp. 1-12
-
-
Srikant, R.1
Agrawal, R.2
-
15
-
-
84897708583
-
Mining sequential patterns: Generalizations and performance improvements
-
R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. In EDBT'96, pages 3-17.
-
EDBT'96
, pp. 3-17
-
-
Srikant, R.1
Agrawal, R.2
-
16
-
-
0000370733
-
Building hierarchical classifiers using class proximity
-
K. wang, S. Zhou, and S. C. Liew. Building hierarchical classifiers using class proximity. In VLDB'99, pages 363-374.
-
VLDB'99
, pp. 363-374
-
-
Wang, K.1
Zhou, S.2
Liew, S.C.3
-
17
-
-
0034592942
-
Generating non-redundant association rules
-
M. Zaki. Generating non-redundant association rules. In KDD'00, pages 34-43.
-
KDD'00
, pp. 34-43
-
-
Zaki, M.1
|